Skip to main content

Advertisement

Log in

Carbon Accumulation in Freshwater Marsh Soils: a Synthesis for Temperate North America

  • General Wetland Science
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Freshwater marshes are prevalent in North America, yet their soil carbon stocks remain poorly quantified. To better understand these stocks, and rates of carbon accumulation over short and long timescales, we synthesize available data on soil properties and rates of carbon accumulation in freshwater marshes in the temperate region of North America. Our findings suggest that freshwater marshes are not defined consistently, and that wetland classification schemes may undervalue presumed carbon stocks in freshwater marsh soils. Rates of carbon accumulation in freshwater marshes are often measured over recent time scales (last 50–100 years); these short-term rates are on average (± SD) 155 ± 74 g C m−2 yr−1 in temperate North America. Long-term rates of carbon accumulation (measured over centuries and millennia) are on average 51 ± 38 g C m−2 yr−1 yet infrequently measured. Our synthesis of rates of carbon accumulation and vertical accretion, bulk densities, and organic carbon contents suggests that freshwater marshes are accumulating carbon at comparable rates to salt marshes over short timescales and temperate peatlands over longer timescales. These timescales need to be clearly defined in order to improve estimates of the capacity for freshwater marshes to be net carbon sinks presently and in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aqrawi AAM (1997) The nature and preservation of organic matter in Holocene lacustrine/deltaic sediments of lower Mesopotamia, SE Iraq. Journal of Petroleum Geology 20(1):69–90

    CAS  Google Scholar 

  • Ausseil AGE, Jamali H, Clarkson BR, Golubiewski NE (2015) Soil carbon stocks in wetlands of New Zealand and impact of land conversion since European settlement. Wetlands Ecology and Management 23(5):947–961

    CAS  Google Scholar 

  • Badiou P, McDougal R, Pennock D, Clark B (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3):237–256

    CAS  Google Scholar 

  • Bansal S, Lishawa SC, Newman S, Tangen BA, Wilcox D, Albert D, Anteau MJ, Chimney MJ, Cressey RL, DeKeyser E, Elgersma KJ, Finkelstein SA, Freeland J, Grosshans R, Klug PE, Larkin DJ, Lawrence BA, Linz G, Marburger J, Noe G, Otto C, Reo N, Richards J, Richardson C, Rodgers L, Schrank AJ, Svedarsky D, Travis S, Tuchman N, Windham-Myers L (2019) Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. In: Typha (cattail) invasion in north American. Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands, Wetlands. https://doi.org/10.1007/s13157-019-01174-7

    Chapter  Google Scholar 

  • Bao K, Zhao H, Xing W, Lu X, McLaughlin NB, Wang G (2011) Carbon accumulation in temperate wetlands of Sanjiang plain, Northeast China. Soil Science Society of America Journal 75(6):2386

    CAS  Google Scholar 

  • Bastviken D, Santoro AL, Marotta H, Pinho LQ, Calheiros DF, Crill P, Enrich-Prast A (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environmental Science & Technology 44(14):5450–5455

    CAS  Google Scholar 

  • Bernal B, Mitsch WJ (2012) Comparing carbon sequestration in temperate freshwater wetland communities. Global Change Biology 18(5):1636–1647

    Google Scholar 

  • Bowden WB (1984) Nitrogen and phosphorus in the sediments of a tidal, freshwater marsh in Massachusetts. Estuaries 7(2):108–118

    CAS  Google Scholar 

  • Bowden WB, Vörösmarty CJ, Morris JT, Peterson BJ, Hobbie JE, Steudler PA, Moore B (1991) Transport and processing of nitrogen in a tidal freshwater wetland. Water Resources Research 27(3):389–408

    CAS  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19(5):1325–1346

    PubMed  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north American wetlands. Wetlands 26(4):889–916

    Google Scholar 

  • Bridgham SD, Moore TR, Richardson CJ, Roulet NT (2014) Errors in greenhouse forcing and soil carbon sequestration estimates in freshwater wetlands: a comment on Mitsch et al. (2013). Landscape Ecology 29(9):1481–1485

    Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29(2):115–133

    Google Scholar 

  • Bunting M, Duthie HC, Campbell DR, Warner BG, Turner LJ (1997) A palaeoecological record of recent environmental change at big creek marsh, long Point, Lake Erie. Journal of Great Lakes Research 23(3):349–368

    Google Scholar 

  • Byun E, Finkelstein SA, Cowling SA, Badiou P (2018) Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada. Carbon Balance and Management 13(1)

  • Cai S, Yu Z (2011) Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania. Quaternary Research 75:605–654

    Google Scholar 

  • Charman D (2002) Peatlands and environmental change. John Wiley & Sons Ltd., England

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4)

  • Chu H, Gottgens JF, Chen J, Sun G, Desai AR, Ouyang Z, Shao C, Czajkowski K (2015) Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources. Global Change Biology 21(3):1165–1181

    PubMed  Google Scholar 

  • Church TM, Sommerfield CK, Velinsky DJ, Point D, Benoit C, Amouroux D, Plaa D, Donard OFX (2006) Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware estuary. Marine Chemistry 102(1–2):72–95

    CAS  Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 303(1117):605–654

    Google Scholar 

  • Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. Oxford University Press, New York

    Google Scholar 

  • Cohen AD (1975) Peats from the Okefenokee Swamp‐marsh complex. Geoscience and Man 11(1):123-131

  • Craft CB (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnology and Oceanography 52(3):1220–1230

    CAS  Google Scholar 

  • Craft CB, Casey WP (2000) Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20(2):323–332

    Google Scholar 

  • Craft CB, Washburn C, Parker A (2008) Chapter 3: latitudinal trends in organic carbon accumulation in temperate freshwater peatlands. In: Vymazal, J. (ed) Wastewater Treatment, Plant Dynamics and Management in Constructed and Natural Wetlands. Springer Netherlands, pp 23–31

  • Crooks S, Sutton-Grier AE, Troxler TG, Herold N, Bernal B, Schile-Beers L, Wirth T (2018) Coastal wetland management as a contribution to the US National Greenhouse gas Inventory. Nature Climate Change 8:1109–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the Central Congo Basin peatland complex. Nature 542(7639):86–90

    CAS  PubMed  Google Scholar 

  • DeLaune RD, Kongchum M, White JR, Jugsujinda A (2013) Freshwater diversions as an ecosystem management tool for maintaining soil organic matter accretion in coastal marshes. Catena 107:139–144

    CAS  Google Scholar 

  • DeLaune RD, Smith CJ, Sarafyan MN (1986) Nitrogen cycling in a freshwater marsh of Panicum Hemitomon on the deltaicplain of the Mississippi River. The Journal of Ecology 74(1):249

    Google Scholar 

  • Delaune RD, White JR, Elsey-Quirk T, Roberts HH, Wang DQ (2018) Differences in long-term vs short-term carbon and nitrogen sequestration in a coastal river delta wetland: implications for global budgets. Organic Geochemistry 123:67–73

    CAS  Google Scholar 

  • Drexler JZ (2011) Peat formation processes through the millennia in tidal marshes of the Sacramento–san Joaquin Delta, California, USA. Estuaries and Coasts 34(5):900–911

    CAS  Google Scholar 

  • Drexler JZ, de Fontaine CS, Brown TA (2009) Peat accretion histories during the past 6,000 years in marshes of the Sacramento–san Joaquin Delta, CA, USA. Estuaries and Coasts 32(5):871–892

    Google Scholar 

  • Drexler JZ, Fuller CC, Archfield S (2018) The approaching obsolescence of 137Cs dating of wetland soils in North America. Quaternary Science Reviews 199:83–96

    Google Scholar 

  • Drexler JZ, Fuller CC, Orlando J, Salas A, Wurster FC, Duberstein JA (2017) Estimation and uncertainty of recent carbon accumulation and vertical accretion in drained and undrained forested peatlands of the southeastern USA: drained and intact forested peatlands. Journal of Geophysical Research 122(10):2563–2579

    CAS  Google Scholar 

  • Drexler JZ, Krauss KW, Sasser MC, Fuller CC, Swarzenski CM, Powell A, Swanson KM, Orlando J (2013) A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina. Wetlands 33(5):965–974

    Google Scholar 

  • Ducks Unlimited Canada (2010). Southern Ontario. Wetland conversion analysis. Barrie: Ducks Unlimited Canada

  • Euliss NH, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361(1–3):179–188

    CAS  PubMed  Google Scholar 

  • Ferland ME, Prairie YT, Teodoru C, del Giorgio PA (2014) Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. Journal of Geophysical Research: Biogeosciences 119(5):836–847

    CAS  Google Scholar 

  • Finkelstein SA, Davis AM (2006) Paleoenvironmental records of water level and climatic changes from the middle to late holocene at a Lake Erie coastal wetland, Ontario, Canada. Quaternary Research 65(01):33–43

    Google Scholar 

  • Finkelstein SA, Peros MC, Davis AM (2005) Late Holocene paleoenvironmental change in a Great Lakes coastal wetland: integrating pollen and diatom datasets. Journal of Paleolimnology 33(1):1–12

    Google Scholar 

  • Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology 13(5):1079–1088

    Google Scholar 

  • Gleason RA (2001) Invertebrate egg and plant seed banks in natural, restored, and drained wetlands in the prairie pothole region (USA) and potential effects of sedimentation on recolonization of hydrophytes and aquatic invertebrates. PhD Dissertation, South Dakota State University, Brookings (SD), 154 pp

  • Graham SA, Craft CB, McCormick PV, Aldous A (2005) Forms and accumulation of soil P in natural and recently restored peatlands—upper Klamath Lake, Oregon, USA. Wetlands 25(3):594–606

    Google Scholar 

  • Hatton RS, DeLaune RD, Patrick WH (1983) Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28(3):494–502

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    CAS  PubMed  Google Scholar 

  • IPCC (2014) Annex II: glossary. In: Mach KJ, Planton S, von Stechow C (eds) climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core writing team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, Switzerland, pp 117-130

  • Jones MC, Bernhardt CE, Krauss KW, Noe GB (2017) The impact of late Holocene land use change, climate variability, and sea level rise on carbon storage in tidal freshwater wetlands on the southeastern United States coastal plain. Journal of Geophysical Research Biogeosciences 122(12):3126–3141

    CAS  Google Scholar 

  • Jones MC, Bernhardt CE, Willard DA (2014) Late Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades. Quaternary Science Reviews 90:90–105

    Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30(1):111–124

    Google Scholar 

  • Khan H, Brush GS (1994) Nutrient and metal accumulation in a freshwater tidal marsh. Estuaries 17(2):345

    CAS  Google Scholar 

  • Kim J (2003) Response of sediment chemistry and accumulation rates to recent environmental changes in the clear Lake watershed, California, USA. Wetlands 23(1):95–103

    Google Scholar 

  • Kolka R, Trettin C, Tang W, Krauss K, Bansal S, Drexler J, Wickland K, Chimner R, Hogan D, Pindilli EJ, Benscoter B, Tangen B, Kane E, Bridgham S, Richardson C (2018) Chapter 13: Terrestrial wetlands. In: Cavallaro N, Shrestha G, Birdsey R, Mayes MA, Najjar RG, Reed SC, Romero-Lankao P, Zhu Z (eds) Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program, Washington, DC, USA, pp 507-567

  • Köster D, Lichter J, Lea PD, Nurse A (2007) Historical eutrophication in a river-estuary complex in mid-coast Maine. Ecological Applications 17(3):765–778

    PubMed  Google Scholar 

  • Lal R (2004) Agricultural activities and the global carbon cycle. Nutrient Cycling in Agroecosystems 70(2):103–116

    CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature. https://doi.org/10.1038/nature16069

  • Loisel J, Yu Z, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber K, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fiałkiewicz-Kozieł B, Finkelstein SA, Gałka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes P, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Mäkilä M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O’Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ABK, Tarnocai C, Thom T, Tuittila ES, Turetsky M, Väliranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou W (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24(9):1028-1042

  • Loomis MJ, Craft CB (2010) Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Science Society of America Journal 74(3):1028

    CAS  Google Scholar 

  • Ma K, Liu J, Zhang Y, Parry LE, Holden J, Ciais P (2015) Refining soil organic carbon stock estimates for China’s palustrine wetlands. Environmental Research Letters 10(12):124016

    Google Scholar 

  • Mazurczyk T, Brooks RP (2018) Carbon storage dynamics of temperate freshwater wetlands in Pennsylvania. Wetlands Ecology and Management 26(5):893–914

    CAS  Google Scholar 

  • Megonigal JP, Neubauer SC (2009) Chapter 19: biogeochemistry of tidal freshwater wetlands in: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) coastal wetlands: an integrated ecosystem approach. Elsevier, pp 535–562

  • Merrill JZ, Cornwell JC (2000) The role of oligohaline marshes in estuarine nutrient cycling. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Press, Dordrecht, pp 425–441

    Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landscape Ecology 28(4):583–597

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. John Wiley and Sons, Hoboken

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. John Wiley and Sons, Hoboken, NJ

    Google Scholar 

  • Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nature Communications 7:13835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer SC (2008) Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78(1):78–88

    Google Scholar 

  • Neubauer SC, Anderson IC, Constantine JA, Kuehl SA (2002) Sediment deposition and accretion in a mid-Atlantic (U.S.a.) tidal freshwater marsh. Estuarine, Coastal and Shelf Science 54(4):713–727

    CAS  Google Scholar 

  • Nichols JE, Peteet DM (2019) Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nature Geoscience 12:917–921. https://doi.org/10.1038/s41561-019-0454-z

    Article  CAS  Google Scholar 

  • Nyman JA, Delaune RD, Patrick WH (1990) Wetland soil formation in the rapidly subsiding Mississippi River deltaic plain: mineral and organic matter relationships. Estuarine, Coastal and Shelf Science 31:57–69

    Google Scholar 

  • Nyman JA, Walters RJ, Delaune RD, Patrick WH (2006) Marsh vertical accretion via vegetative growth. Estuarine, Coastal and Shelf Science 69(3–4):370–380

    Google Scholar 

  • Orson RA, Robert SL, Good RE (1990) Rates of sediment accumulation in a tidal freshwater marsh. SEPM Journal of Sedimentary Research 60

  • Orson RA, Simpson RL, Good RE (1992) The paleoecological development of a late Holocene, tidal freshwater marsh of the upper Delaware River estuary. Estuaries 15(2):130

    Google Scholar 

  • Ott CA, Chimner RA (2016) Long-term peat accumulation in temperate forested peatlands (Thuja occidentalis swamps) in the Great Lakes region of North America. Mires & Peat 18

  • Ouyang X, Lee SY (2014) Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11(18):5057–5071

    Google Scholar 

  • Packalen MS, Finkelstein SA (2014) Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay lowlands, Canada. The Holocene 24(9):1063–1074

    Google Scholar 

  • Packalen MS, Finkelstein SA, McLaughlin JW (2014) Carbon storage and potential methane production in the Hudson Bay lowlands since mid-Holocene peat initiation. Nature Communications 5

  • Page KL, Dalal RC (2011) Contribution of natural and drained wetland systems to carbon stocks, CO2, N2O, and CH4 fluxes: an Australian perspective. Soil Research 49:377–388

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7(9):e43542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen JP, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DYF, Veenendaal E, Parmentier FJW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald T, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma SB, Bernhofer C, Cescatti A (2015) The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences 112(15):4594–4599

    Google Scholar 

  • Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31(5):831–842

    Google Scholar 

  • Ramsar Convention Secretariat (2013) The Ramsar convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971) 6th ed. Ramsar Convention Secretariat, Gland, Switzerland

  • Reddy KR, Delaune RD (2008) Biogeochemistry of wetlands. Taylor & Francis Group, Florida

    Google Scholar 

  • Riley JL (1994) peat and peatland resources of southeastern Ontario. (Micellaneous paper 154). Ontario Geological Survey

  • Rippke MB, Distler MT, Farrell JM (2010) Holocene vegetation dynamics of an upper St. Lawrence River wetland: Paleoecological evidence for a recent increase in cattail (Typha). Wetlands 30(4):805–816

    Google Scholar 

  • Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK, Ciais P, Arora VK, Bastviken D, Bergamaschi P, Blake DR, Brailsford G, Bruhwiler L, Carlson KM, Carrol M, Castaldi S, Chandra N, Crevoisier C, Crill PM, Covey K, Curry CL, Etiope G, Frankenberg C, Gedney N, Hegglin MI, Höglund-Isakson L, Hugelius G, Ishizawa M, Ito A, Janssens-Maenhout G, Jensen KM, Joos F, Kleinen T, Krummel PB, Langenfelds RL, Laruelle GG, Liu L, Machida T, Maksyutov S, McDonald KC, McNorton J, Miller PA, Melton JR, Morino I, Müller J, Murgia-Flores F, Naik V, Niwa Y, Noce S, O'Doherty S, Parker RJ, Peng C, Peng S, Peters GP, Prigent C, Prinn R, Ramonet M, Regnier P, Riley WJ, Rosentreter JA, Segers A, Simpson IJ, Shi H, Smith SJ, Steele LP, Thornton BF, Tian H, Tohjima Y, Tubiello FN, Tsuruta A, Viovy N, Voulgarakis A, Weber TS, van Weele M, van der Werf GR, Weiss RF, Worthy D, Wunch D, Yin Y, Yoshida Y, Zhang W, Zhang Z, Zhao Y, Zheng B, Zhu Q, Zhu Q, Zhuang Q (2019) The global methane budget 2000-2017. Earth System Science Data. https://doi.org/10.5194/essd-2019-128

  • Sim TG, Swindles GT, Morris PJ, Galka M, Mullan D, Galloway JM (2019) Pathways for ecological change in Canadian high arctic wetlands under twentieth century warming. Geophysical Research Letters 46:4726–4737

    Google Scholar 

  • Singer DK, Jackson ST, Madsen BJ, Wilcox DA (1996) Differentiating climatic and successional influences on long-term development of a marsh. Ecology 77(6):1765-1778

  • Shiller JA, Finkelstein SA, Cowling SA (2014) Relative importance of climatic and autogenic controls on Holocene carbon accumulation in a temperate bog in southern Ontario, Canada. The Holocene 24(9):1105–1116

    Google Scholar 

  • Smith CJ, DeLaune RD, Patrick WH (1983) Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuarine, Coastal and Shelf Science 17(1):21–29

    CAS  Google Scholar 

  • Snell E (1987) Wetland distribution and conversion in southern Ontario (inland waters and lands Dictorate no. 48). Ottawa: Environment Canada, pp 1–50

  • Soil Survey Staff (2010) Key to Soil Taxonomy. 11th edition U.S. Department of Agriculture Natural Resource Conservation Service 338 pp. [https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_050915.pdf]

  • Soil Survey Staff (1999) Soil Taxonomy, 2nd edn, Agriculture Handbook Number 436. United States Department of Agriculture Natural Resources Conservation Service 886 pp. [https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf]

  • Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS (2019) Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience 12:685–692

    CAS  Google Scholar 

  • Strachan IB, Nugent KA, Crombie S, Bonneville MC (2015) Carbon dioxide and methane exchange at a cool-temperate freshwater marsh. Environmental Research Letters 10(6):065006

    Google Scholar 

  • Tangen B, Bansal S (2017) Soil properties and greenhouse gas fluxes of Prairie pothole region wetlands: a comprehensive data release. U.S. Geological Survey. https://doi.org/10.5066/F7KS6QG2

    Book  Google Scholar 

  • Thomas S, Ridd PV (2004) Review of methods to measure short time scale sediment accumulation. Marine Geology 207:95–114

    Google Scholar 

  • Thormann MN, Szumigalski AR, Bayley SE (1999) Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada. Wetlands 19(2):305–317

    Google Scholar 

  • van Ardenne LB, Jolicouer S, Bérubé D, Burdick D, Chmura GL (2018) The importance of geomorphic context for estimating the carbon stock of salt marshes. Geoderma 330:264–275

    Google Scholar 

  • Van de Broek M, Temmerman S, Merckx R, Govers G (2016) Controls on soil organic carbon stocks in tidal marshes along an estuarine salinity gradient. Biogeosciences 13(24):6611–6624

    Google Scholar 

  • Van de Broek M, Vandendriessche C, Poppelmonde D, Merckx R, Temmerman S, Govers G (2018) Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary. Global Change Biology 24(6):2498–2512

    PubMed  Google Scholar 

  • Verhoeven JTA, Setter TL (2010) Agricultural use of wetlands: opportunities and limitations. Annals of Botany 105(1):155–163

    PubMed  Google Scholar 

  • Villa JA, Bernal B (2018) Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecological Engineering 114:115–128

    Google Scholar 

  • Wang B, Brewer PE, Shugart HH, Lerdau MT, Allison SD (2019) Soil aggregates as biogeochemical reactors and implications for soil-atmosphere exchange of greenhouse gases-a concept. Global Change Biology 25(2):373–385

    PubMed  Google Scholar 

  • Wang JJ, Dodla SK, DeLaune RD, Hudnall WH, Cook RL (2011) Soil carbon characteristics in two Mississippi River deltaic marshland profiles. Wetlands 31(1):157–166

    Google Scholar 

  • Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120:163–189

    CAS  Google Scholar 

  • Wickland KP, Krusche AV, Kolka RK, Kishimoto-Mo AW, Chimner RA, Serengil Y, Ogle S, Srivastava N (2014) Inland wetland mineral soils. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Fukuda M, Troxler TG (eds) Supplement to the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland, 354 pp

  • Xiao D, Deng L, Dong-Gill K, Huang C, Tian K (2019) Carbon budgets of wetland ecosystems in China. Global Change Biology:1–16

  • Yu Z (2011) Holocene carbon flux histories of the world’s peatlands: global carbon-cycle implications. The Holocene 21(5):761–774

    Google Scholar 

  • Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010) Global peatland dynamics since the last glacial maximum. Geophysical Research Letters 37(13)

  • Zhang WJ, Xiao HA, Tong CL, Su YR, Xiang W, Huang DY, Syers JK, Wu J (2008) Estimating organic carbon storage in temperate wetland profiles in Northeast China. Geoderma 146(1–2):311–316

    CAS  Google Scholar 

  • Zoltai SC (1988) Chapter 1: wetland environments and classification. In: Wetlands of Canada. Polyscience Publications Inc., Montreal, pp 1–26

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge scholarships (to A.L.) and grants (to S.F.) from the Natural Sciences and Engineering Research Council of Canada in support of this research. We thank Brian Tangen and Sheel Bansal for supplying and guiding us through the U.S. Geological Survey’s publicly-available data set of soil properties of wetlands in the U.S. Prairie Pothole Region, and we thank Judy Drexler and Pascal Badiou for helpful discussions. In addition, we thank two anonymous reviewers for insightful comments which improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda L. Loder.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loder, A.L., Finkelstein, S.A. Carbon Accumulation in Freshwater Marsh Soils: a Synthesis for Temperate North America. Wetlands 40, 1173–1187 (2020). https://doi.org/10.1007/s13157-019-01264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01264-6

Keywords

Navigation