Skip to main content

Wetland Bird Response to Habitat Composition and Configuration at Multiple Spatial Scales

Abstract

Wetlands loss has major consequences for biodiversity. The Delta of Paraná River is one of the largest wetland ecosystems in South America undergoing rapid conversion of freshwater marshes to pastures. We evaluated the response of nine wetland bird species to a gradient of landscape structure accounting for different levels of wetland loss in the Lower Delta, Argentina. We used point counts and a hierarchical distance sampling approach to assess the effects of wetland area, configuration, and land use on the density of species. Wetland area was the most important factor determining species density; most species responded positively at 100 m. The effect of wetland configuration varied among species; contiguous freshwater marsh area at 500 m only favored one species, whereas a large number of small patches of freshwater marsh benefited most species. Higher cattle density showed variable effects, and larger areas within polders reduced the density of two species. In the long term, wetland birds of the Lower Delta could decrease in density due to wetland loss and anthropogenic changes in the landscape. Our study shows the importance of considering the response of multiple species to landscape change at multiple scales and the need for a sustainable management of wetlands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Anderson DR (2008) Model based inference in the life sciences. A Primer on evidence. Springer, New York

  • Banks-Leite C, Ewers RM, Metzger JP (2013) The confounded effects of habitat disturbance at the local, patch and landscape scale on understorey birds of the Atlantic Forest: implications for the development of landscape-based indicators. Ecological Indicators 31:82–88. https://doi.org/10.1016/j.ecolind.2012.04.015

    Article  Google Scholar 

  • Beintema AJ, Muskens GJDM (1987) Nesting success of birds breeding Dutch agricultural grasslands. Journal of Applied Ecology 24:743–758

    Article  Google Scholar 

  • Benzaquén L, Blanco D, Bó RF, et al (2013) Inventario de los humedales de Argentina. Sistemas de paisajes de humedales del Corredor Fluvial Paraná-Paraguay. Secretaría de Ambiente y Desarrollo Sustentable de la Nación. Proyecto GEF 4206 – PNUD ARG/10/003

  • Benzaquén L, Blanco D, Bó RF, Kandus P, Lingua G, Minotti P, Quintana RD (2017) Regiones de humedales de la Argentina. Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, Universidad Nacional de San Martín and Universidad de Buenos Aires

  • Bernardos JN (2016) Tendencia de la ocupación espacial por aves en la región Pampeana Argentina y su relación con el uso de la tierra. National University of Cordoba, Argentina, Disertation

    Google Scholar 

  • Bó RF, Quintana RD, Courtalón P et al (2010) Efectos de los cambios en el régimen hidrológico por las actividades humanas sobre la vegetación y la fauna silvestre del Delta del Río Paraná. In: Blanco DE, Méndez FM (eds) Endicamientos y terraplenes en el Delta del Paraná. Fundación para la Conservación y el Uso Sustentable de los Humedales, Buenos Aires, pp 33–64

    Google Scholar 

  • Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landscape Ecology 24:907–918. https://doi.org/10.1007/s10980-009-9370-8

    Article  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29:115–133. https://doi.org/10.1017/S0376892902000085

    Article  Google Scholar 

  • Brown M, Dinsmore JJ (1986) Implications of marsh size and isolation for marsh bird management. Journal of Wildlife Management 50:392–397

    Article  Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL (1993) Assumptions and modelling philosophy. Distance sampling: estimating the abundance of biological populations, 1st edn. Chapman y Hall, London, pp 29–51

  • Cushman SA, McGarigal K (2004) Patterns in the species-environment relationship depend on both scale and choice of response variables. Oikos 105:117–124. https://doi.org/10.1111/j.0030-1299.2004.12524.x

    Article  Google Scholar 

  • de la Peña MR (2005) Reproducción de las aves argentinas (con descripción de pichones). L.O.L.A, Buenos Aires

    Google Scholar 

  • Deluca WV, Studds CE, Rockwood LL, Marra PP (2004) Influence of land use on the integrity of marsh bird communities of Chesapeake bay, USA. Wetlands 24:837–847

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81:163–182. https://doi.org/10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecological and Environmental Systems 34:487–515. https://doi.org/10.1146/132419

    Article  Google Scholar 

  • Ferman LM, Montalti D (2010) Summer feeding ecology of great pampa-finches, Embernagra platensis at Laguna de Guaminí, Buenos Aires, Argentina. Anais da Academia Brasileira de Ciencias 82:663–669. https://doi.org/10.1590/S0001-37652010000300014

    Article  PubMed  Google Scholar 

  • Fernandez GJ, Mermoz ME (2000) Effect of predation and cowbird parasitism on the nesting success of two sympatric neotropical marshbirds. Wilson Bulletin 112:354–364. https://doi.org/10.1676/0043-5643(2000)112

    Article  Google Scholar 

  • Fernández G, Mermoz ME (2007) Life history traits and breeding success of the scarlet-headed blackbird (Amblyramphus holosericeus) in the Argentinean pampas. Ornitologia neotropical 18:407–419

    Google Scholar 

  • Fiske IJ, Chandler RB (2011) Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43:1–23. https://doi.org/10.1002/wics.10

    Article  Google Scholar 

  • Fracassi N, Quintana RD, Pereira JA, Mujica G, Landó R (2014) Estrategias de Conservación de la Biodiversidad en Bosques Plantados de Salicáceas del Bajo Delta del Paraná, 1st edn. Ediciones INTA, Buenos Aires, 60 p

    Google Scholar 

  • Gardner RC, Barchiesi S, Beltrame C et al (2015) State of the World’s wetlands and their services to people : a compilation of recent analyses. Gland, Switzerland

    Google Scholar 

  • Holland GJ, Bennett AF (2009) Differing responses to landscape change: implications for small mammal assemblages in forest fragments. Biodiversity and Conservation 18:2997–3016. https://doi.org/10.1007/s10531-009-9621-7

    Article  Google Scholar 

  • Holland JD, Bert DG, Fahrig L (2004) Determining the spatial scale of species’ response to habitat. BioScience 54:227. https://doi.org/10.1641/0006-3568(2004)054[0227:DTSSOS]2.0.CO;2

    Article  Google Scholar 

  • IGN (2015) Instituto Geofráfico Nacional. http://www.ign.gob.ar/ Accessed March 2015

  • Junk WJ, An S, Finlayson CM et al (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75:151–167. https://doi.org/10.1007/s00027-012-0278-z

    CAS  Article  Google Scholar 

  • Kandus P, Quintana RD, Bó RF (2006) Patrones de paisaje y Biodiversidad del Bajo Delta del Río Paraná. Mapa de ambientes (patterns of landscape and biodiversity of the lower Delta of the Paraná River. Map of environments), 1st edn. Pablo Casamajor, Buenos Aires, Argentina, Argentina

  • Kingsford RT (2000) Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology 25:109–127. https://doi.org/10.1046/j.1442-9993.2000.01036.x

    Article  Google Scholar 

  • Lawler JJ, Edwards TC (2002) Landscape patterns as habitat predictors: building and testing models for cavity-nesting birds in the Uinta Mountains of Utah, USA. Landscape Ecology 17:233–245. https://doi.org/10.1023/A:1020219914926

    Article  Google Scholar 

  • López-Lanús B, Grilli P, Di Giacomo AS, et al. (2008) Categorización de las aves de la Argentina según su estado de conservación. Aves Argentinas/AOP y Secretaría de Ambiente y Desarrollo Sustentable, Buenos Aires

  • Lor S, Malecki R (2002) Call-response surveys to monitor marsh bird population trends. Wildlife Society Bulletin 30:1195–1201

    Google Scholar 

  • Malvárez AI (1999) El Delta del Río Paraná como mosaico de humedales. In: Malvárez AI (ed) Tópicos sobre humedales subtropicales y templados de Sudamérica, 1st edn. Montevideo, Uruguay, pp 35–54

    Google Scholar 

  • Mastrangelo ME, Gavin MC (2014) Impacts of agricultural intensification on avian richness at multiple scales in dry Chaco forests. Biological Conservation 179:63–71. https://doi.org/10.1016/j.biocon.2014.08.020

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at: http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: wetlands and water synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Miller JR, Wiens JA, Hobbs NT, Theobald DM (2003) Effects of human settlement on bird communities in lowland riparian areas of Colorado (USA). Ecological Applications 13:1041–1059. https://doi.org/10.1890/1051-0761(2003)13[1041:EOHSOB]2.0.CO;2

    Article  Google Scholar 

  • Minotti PG, Kandus P (2013) Actualización y profundización del mapa de endicamientos y terraplenes de la región del Delta del Paraná - 2013. Buenos Aires

  • Narosky T, Yzurieta D (2013) Guía de Identificación de Aves de Argentina y Uruguay. Vazques Mazzini Editores, Buenos Aires

    Google Scholar 

  • Newbold T, Scharlemann JPW, Butchart SHM, et al (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proceedings. Biological sciences / The Royal Society 280:20122131. doi: https://doi.org/10.1098/rspb.2012.2131

  • O’Connell MJ (2003) Detecting, measuring and reversing changes to wetlands. Wetlands Ecology and Management 11:397–401. https://doi.org/10.1023/B:WETL.0000007191.77103.53

    Article  Google Scholar 

  • Popotnik GJ, Giuliano WM (2000) Response of birds to grazing of riparian zones. Journal of Wildlife Management 64:976–982

    Article  Google Scholar 

  • Quesnelle PE, Fahrig L, Lindsay KE (2013) Effects of habitat loss, habitat configuration and matrix composition on declining wetland species. Biological Conservation 160:200–208. https://doi.org/10.1016/j.biocon.2013.01.020

    Article  Google Scholar 

  • Quintana RD, Bó RF, Astrada E, Reeves C (2014) Lineamientos para una ganadería ambientalmente sustentable en el Delta del Paraná. Fundación Humedales / Wetlands International LAC, Buenos Aires

    Google Scholar 

  • Ralph CJ, Geupel GR, Pyle P et al (1993) Handbook of field methods for monitoring Landbirds. Pacific Southwest Research Station, Albany

    Book  Google Scholar 

  • Ramsar Convention Secretariat (2010). Wise use of wetlands: concepts and approaches for the wise use of wetlands. Ramsar handbooks for the wise use of wetlands, 4th edn, vol. 1. Ramsar Convention Secretariat, Gland, Switzerland

  • Reeves PN, Champion PD (2004) Effects of livestock grazing on wetlands : literature review. National Institute of Water and Atmospheric Research ltd. Hamilton, New Zealand

    Google Scholar 

  • Royle AJ, Dawson DK, Bates S (2004) Modeling abundance effects in distance sampling. Ecology 85:1591–1597

    Article  Google Scholar 

  • Saab VA, Bock CE, Rich TD, Dobkin DS (1995) Livestock grazing effects in western North America. Ecology and management of neotropical migratory birds. Oxford University Press, New York, pp 311–353

    Google Scholar 

  • Sauer JR, Fallon JE, Johnson R (2003) Use of north American breeding bird survey data to estimate population change for bird conservation regions. The Journal of wildlife management. 1:372–389

    Article  Google Scholar 

  • Shriver WG, Hodgman TP, Gibbs JP, Vickery PD (2004) Landscape context influences salt marsh bird diversity and area requirements in New England. Biological Conservation 119:545–553. https://doi.org/10.1016/j.biocon.2004.01.016

    Article  Google Scholar 

  • Shutler D, Mullie A, Clark RG (2000) Bird communities of prairie uppland and wetlands in relation to farming practices in Saskatchewan.pdf. Conservation Biology 14:1441–1451

    Article  Google Scholar 

  • Sica YV, Quintana RD, Radeloff VC, Gavier-Pizarro GI (2016) Wetland loss due to land use change in the lower Paraná River Delta, Argentina. Science of the Total Environment 568:967–978. https://doi.org/10.1016/j.scitotenv.2016.04.200

    CAS  Article  Google Scholar 

  • Sica YV, Gavier-Pizarro GI, Pidgeon AM et al (2018) Changes in bird assemblages in a wetland ecosystem after 14 years of intensified cattle farming. Austral Ecology 43:786–797. https://doi.org/10.1111/aec.12621

    Article  Google Scholar 

  • SIGSA (2013) Sistema Integrado de Gestión de Sanidad Animal from Servicio Nacional de Sanidad y Calidad Agroalimentaria in Argentina. Available via SENASA. http://www.senasa.gob.ar/ Accessed Agust 2015

  • Sillett TS, Chandler RB, Royle AJ et al (2012) Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecological Applications 22:1997–2006

    Article  Google Scholar 

  • Smith LA, Chow-Fraser P (2010) Impacts of adjacent land use and isolation on marsh bird communities. Environmental Management 45:1040–1051. https://doi.org/10.1007/s00267-010-9475-5

    Article  PubMed  Google Scholar 

  • Symonds MRE, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology 65:13–21. https://doi.org/10.1007/s00265-010-1037-6

    Article  Google Scholar 

  • Tozer DC, Nol E, Abraham KF (2010) Effects of local and landscape-scale habitat variables on abundance and reproductive success of wetland birds. Wetlands Ecology and Management 18:679–693. https://doi.org/10.1007/s11273-010-9187-x

    Article  Google Scholar 

  • Trzcinski MK, Fahrig L, Merriam G (1999) Independent effects of Forest cover and fragmentation on the distribution of Forest breeding birds. Ecological Applications 9:586–593

    Article  Google Scholar 

  • Vickery JA, Tallowin JR, Feber RE et al (2001) The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. Journal of Applied Ecology 38:647–664

    Article  Google Scholar 

  • Ward MP, Semel B, Herkert JR (2010) Identifying the ecological causes of long-term declines of wetland-dependent birds in an urbanizing landscape. Biodiversity and Conservation 19:3287–3300. https://doi.org/10.1007/s10531-010-9893-y

    Article  Google Scholar 

  • Whited DC, Galatowitsch SM, Tester JR et al (2000) The importance of local and regional factors in predicting effective conservation. Planning strategies for wetland bird communities in agricultural and urban landscapes. Landscape and Urban Planning 49:49–65. https://doi.org/10.1016/S0169-2046(00)00046-3

    Article  Google Scholar 

  • Wittmann F, Householder JE, de Olivera WA, Lopes A, Junk WJ, Fernandez Piedade MT (2015) Implementation of the Ramsar convention on south American wetlands: an update. Research and Reports in Biodiversity Studies 4:47–58

    Article  Google Scholar 

  • Zaccagnini ME, Canavelli SB, Calamari N, Schrag AM (2010) Regional bird monitoring as a tool for predicting the effects of land use and climate change on pampas biodiversity. In: Dallmeir F (ed) Climate change, biodiversity, and sustainability in the Americas: impacts and adaptations. Smithsonian Institution Scholarly Press, Washington, US, pp 39–52

    Google Scholar 

Download references

Acknowledgements

We are grateful to all the people that participated in the field surveys specially Natalia Garcia, Natalia Denkiewicz, Evelyn Figueroa Schibber, and Ileana Martinez. We also thank Sebastian Dardanelli for his collaboration during the survey design. This study was financially supported by the Instituto Nacional de Tecnología Agropecuaria (PE 1128053 and 1128052), the Consejo Nacional de Investigaciones Científicas y Técnicas (PICTOCIN I 0022 and PIP 0092) and the Agencia Nacional de Promoción Científica y Tecnológica (PICT Bicentenario 2227 and PICT 2017- 2982). We are also thankful to the Consejo Nacional de Investigaciones Científicas y Técnicas for the doctoral fellowship that allowed the development of this study. We specially thank three anonymous reviewers for valuable comments and edits in previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanina V. Sica.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sica, Y.V., Quintana, R.D., Bernardos, J.N. et al. Wetland Bird Response to Habitat Composition and Configuration at Multiple Spatial Scales. Wetlands 40, 2513–2525 (2020). https://doi.org/10.1007/s13157-019-01215-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-019-01215-1

Keywords

  • Cattle grazing
  • Freshwater marsh conversion
  • Hierarchical distance sampling (HDS)
  • Land use/cover change
  • Lower Delta of Paraná River