Abdel-Raouf N, Al-Homaidan A, Ibraheem I (2012) Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19(3):257–275
CAS
PubMed
PubMed Central
Google Scholar
Ball AS, Williams M, Vincent D, Robinson J (2001) Algal growth control by a barley straw extract. Bioresource Technology 77:177–181
CAS
PubMed
Google Scholar
Barrett PRF, Littlejohn JW, Curnow J (1999) Long-term algal control in a reservoir using barley straw. Hydrobiologia 415:309–313
Google Scholar
Biggs BJ, Price GM (1987) A survey of filamentous algal proliferations in New Zealand Rivers. New Zealand Journal of Marine and Freshwater Research 21:175–191
Google Scholar
Birkinshaw N, Kemp E, Clarke S (2013) The ecology of grass-wrack pondweed Potamogeton Compressus. Natural England Commissioned ReportsNumber 130
Boelee N, Temmink H, Janssen M, Buisman C, Wijffels R (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research 45(18):5925–5933
CAS
PubMed
Google Scholar
Boylan JD, Morris J (2003) Limited effects of barley straw on algae and zooplankton in a Midwestern pond. Lake and Reservoir Management 19:265–271
Google Scholar
Brönmark C (1989) Interactions between epiphytes, macrophytes and freshwater snails: a review. Journal of Molluscan Studies 55:299–311
Google Scholar
Brönmark C, Rundle SD, Erlandsson A (1991) Interactions between freshwater snails and tadpoles: competition and facilitation. Oecologia 87:8–18
PubMed
Google Scholar
Caffrey J, Monahan C (1999) Filamentous algal control using barley straw. Hydrobiologia 415:315–318
Google Scholar
Calow P, Calow LJ (1975) Cellulase activity and niche separation in freshwater gastropods. Nature 255:478–480
CAS
PubMed
Google Scholar
Carpenter S, Caraco N, Correll D, Howarth R, Sharpley A, Smith V (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8(3):559
Google Scholar
Chambers PA, Prepas EE, Bothwell ML, Hamilton HR (1989) Roots versus shoots in nutrient uptake by aquatic Macrophytes in flowing waters. Candian Journal Of Fisheries And Aquatic Sciences 46:435–439
Google Scholar
Cheney C, Hough RA (1983) Factors controlling photosynthetic productivity in a population of Cladophorafracta (Chlorophyta). Ecology 64:68–77
Google Scholar
Chislock MF, Doster E, Zitomer RA, Wilson AE (2013) Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge 4(4):10
Google Scholar
Colletti PJ, Blinn DW, Pickart A, Wagner VT (1987) Influence of different densities of the mayfly grazer Heptagenia Criddlei on lotic diatom communities. Journal of the North American Benthological Society 6:270–280
Google Scholar
Dillon PJ, Rigler FH (1974) A test of simple nutrient budget model predicting the phosphorus concentration in Lake water. Journal of the Fisheries Research Board of Canada 31:1771–1778
CAS
Google Scholar
Everall NC, Lees DR (1996) The use of barley straw to control general and blue-green algal growth in a Derbyshire reservoir. Water Research 30:269–276
CAS
Google Scholar
Feminella JW, Hawkins CH (1995) Interactions between stream herbivores and Periphyton; a quantitative analysis of past experiments. Journal of North American Benthological Society 14:465–509
Google Scholar
Ferber LR, Levine SN, Lini A, Livingston GP (2004) Do cyanobacteria dominate in Eutrophic Lakes because they fix atmospheric nitrogen? Freshwater Bioogy. 49:690–708
CAS
Google Scholar
Gao J-Q, Xiong Z-T, Zhang W-H, Deng X-W, Shang L-Y, Fu C-Y (2007) Removal efficiency of phosphorus in hypertrophic lake donghu water by common submerged macrophytes; resources and environment in the Yangtze Basin. School Of Resource And Environment, Wuhan University, Wuhan 430072, China
Geiger S, Henry E, Hayes P, Haggard K (2005) Barley straw – algae control literature analysis
Google Scholar
Gibson MT, Welch IM, Barrett PRF, Ridge I (1990) Barley straw as an inhibitor of algal growth II: laboratory studies. Journal of Applied Phycology 2:241–248
Google Scholar
Gregory SV (1983) Plant-herbivore interactions in stream systems. In: Barnes JR, Minshall GW (eds) Stream ecology: application and testing of general ecological theory. Plenum, New York, pp 159–189
Google Scholar
Hosper SH (1989) Biomanipulation, new perspective for restoring Shallow Lakes in the Netherlands. Hydrobiologia Bulletin 23:5–10
Google Scholar
Houman Rajabi Islami HR, Filizadeh Y (2011) Use of barley straw to control nuisance freshwater algae. American Water Works Association (Awwa) 103:5–12
Google Scholar
Hutchinson GE (1975) A treatise on limnology, vol Iii. Limnological Botany. John Wiley & Sons, New York
Google Scholar
Jacoby JM (1987) Alterations in Periphyton characteristics due to grazing in a Cascade foothill stream. Freshwater Biology 18:495–508
Google Scholar
Jeppesen E (1998) The ecology of Shallow Lakes—trophic interactions in the Pelagial. D.Sc. Dissertation. Ministry Of Environment And Energy, National Environmental Research Institute
Jeppesen E, Kristensen P, Jensen J, Sondergaard M, Mortensen E, Lauridsen T (1991) Recovery resilience following a reduction in external phosphorus loading of shallow eutrophic Danish lakes: duration, regulating factors and Methods for overcoming resilience. Istituto Italiano Di Idrobiologia 48:127–148
Google Scholar
Lamberti GA, Moore JW (1984) Aquatic insects as primary consumers. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger, New York, pp 164–195
Google Scholar
Lidén A (2016) Safe drinking water in a changing environment: membrane filtration in a Swedish context. Lund University, Water Resources Engineering
Google Scholar
Maberly SC, King L, Gibson CE, May L, Jones RI, Jordan MMD aC (2003) Linking nutrient limitation and water chemistry in Upland Lakes to catchment characteristics. Hydrobiologia 506:83–91
Google Scholar
Martin D, Ridge I (1999) The relative sensitivity of algae to decomposing barley straw. Journal of Applied Phycology 11:285–229
Google Scholar
Meijer ML, Raat AJ, Doef RW (1989) Restoration by biomanipulation of Lake Bleiswijkse zoom the Netherlands first results. Hydrobiology Bulletin 23:49–58
CAS
Google Scholar
Moss B (2001) The broads. The People’s wetland. The new naturalist. Harper Collins Publishers, London
Google Scholar
Nelson C, Bennett D, Cardinale B (2013) Consistency and sensitivity of stream periphyton community structural and functional responses to nutrient enrichment. Ecological Applications 23(1):159–173
PubMed
Google Scholar
Newman JR, Barrett PRF (1993) Control of Microcystis Aeruginosa by decomposing barley straw. Journal ofAquatic Plant Management 31:203–206
Google Scholar
Ozimek T, Gulati RD, Van Donk E (1990) Can Macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201:399–407
Google Scholar
Phillips GL, Eminson D, Moss B (1978) A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4:103–126
Google Scholar
Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquatic Botany 135:37–45
Google Scholar
Power ME, Stewart AJ, Matthews WJ (1988) Grazer control of algae in an Ozark Mountain stream: effects of short-term exclusion. Ecology 69:1894–1898
Google Scholar
Pretty JN, Mason CF, Nedwell DB, Hine RE, Leaf S, Dils R (2003) Environmental costs of freshwater Eutrophication in England and Wales. Environmental Science & Technology 37:201–208
CAS
Google Scholar
Prygiel E, Charriau A, Descamps R, Prygiel J, Ouddane B, Billon G (2014) Efficiency evaluation of an Algistatic treatment based on barley straw in a hypertrophicpond. J Environ Eng Landsc Manag 22(1):1–13
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 28 Jan 2018
Ridge I, Pillinger JM (1996) Towards understanding the nature of algal inhibitors from barley straw. Hydrobiologia 340:301–305
CAS
Google Scholar
Scheffer M (1998) Ecology of Shallow Lakes. Chapman And Hall, London, p 357
Google Scholar
Scheffer M, Van Nes EH (2007) Shallow Lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and Lake size. Hydrobiologia 584:455–466
CAS
Google Scholar
Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in Shallow Lakes. Trends in Ecology and Evolution 8:275–279
CAS
PubMed
Google Scholar
Schindler D (2006) Recent advances in the understanding and management of eutrophication. Limnology and Oceanography 51(1):356–363
Google Scholar
Skoog G (1978) Influence of natural food items on growth and egg production in brackish water populations of Lymnaea Peregra and Theodoxus Uviatilis (Mollusca). Oikos 31:340–348
Google Scholar
Smith CS, Barko JW (1990) Ecology of Eurasian watermilfoil. Journal of Aquatic Plant Management 28:55–64
Google Scholar
Søndergaard M (2007) Nutrient dynamics in lakes – with emphasis on phosphorus, sediment and Lake restorations. Doctor’s dissertation (Dsc). National Environmental Research Institute, University Of Aarhus, Denmark. 276 Pp.
Spence DHN (1982) The zonation of plants in Freshwater Lakes. In: Macfadyen A, Ford ED (eds) Advances in ecological research. Academic Press, London, pp 37–126
Google Scholar
Steinman AD, Mcintire CD, Gregory SV, Lamberti GA, Ashkenas LR (1987a) Effects of herbivore type and density on taxonomic structure and physiognomy of algal assemblages in laboratory streams. Journal of the North American Benthological Society 6:175–188
Google Scholar
Steinman AD, Mcintire CD, Lowry RR (1987b) Effects of herbivore type and density on chemical composition of algal assemblages in laboratory streams. Journal of the North American Benthological Society 6:189–197
Google Scholar
Stevenson RJ, Bothwell ML, Lowe RL (1996) Freshwater benthic systems. Academic Press; Eds. Algal Ecology, San Diego
Google Scholar
Timm RM, Moss B (1984) Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of Zooplanktivorus fish. In: a shallow wetland ecosystem. Limnology and Oceanography 29:472–486
Google Scholar
Underwood GJC, Thomas JD, Baker JH (1992) An experimental investigation of interactions in snail macrophyte-epiphyte systems. Oecologia 91:587–595
CAS
PubMed
Google Scholar
Urrutia-Cordero P, Ekvall MK, Ratcovich J, Soares M, Wilken S, Zhang H, Hansson L-A (2017) Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshwater Biology 10:1111–13027
Google Scholar
Welch EB, Horner RR, Patmont CR (1989) Prediction of nuisance Periphytic biomass: a management approach. Water Research 23:401–405
CAS
Google Scholar
Welch IM, Barrett PRF, Gibson MT, Ridge I (1990) Barley straw as an inhibitor of algal growth in: studies in the Chesterfield Canal. Journal of Applied Phycology 2:231–239
Google Scholar
Welch EB, Quinn JM, Hickey CW (1992) Periphyton biomass related to point-source nutrient enrichment in seven New Zealand streams. Water Research 26:669–675
CAS
Google Scholar
Xin L, Hong-Ying H, Ke G, Ying-Xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus Sp. Bioresource Technology 101(14):5494–5500
CAS
PubMed
Google Scholar