Skip to main content

Advertisement

Log in

Greenhouse Gas Dynamics of a Northern Boreal Peatland Used for Treating Metal Mine Wastewater

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Northern peatlands in their natural state are sinks of carbon dioxide (CO2) but sources of methane (CH4). They are often nitrogen limited and can act as sinks for greenhouse gas (GHG) nitrous oxide (N2O). Peatlands have been used to treat wastewaters from different point sources. Continuous nutrient and pollutant load to a nutrient limited peatland ecosystem may change the microbial processes and lead to increased productivity, which together are likely to change the GHG emissions. We studied the effect of wastewater derived from metal mining on N2O and CH4 emissions on two treatment peatlands in northern boreal zone. The measured CH4 fluxes from the reference point without any wastewater load were in the range of those reported from northern pristine peatlands while emissions from treatment peatlands were greatly reduced, presumably as result of high sulfate concentration in the porewater. N2O emissions were small in the reference point, but up to 300 times higher in the treatment peatlands. Methane emissions increased with increasing total organic carbon concentration and decreased with increasing sulfate concentration in the surface water, respectively, while N2O emissions increased with increasing nitrate concentrations. The data indicate drastic changes in GHG fluxes and related biogeochemical processes in treatment peatlands as compared to the reference point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm J, Saarnio S, Nykänen H, Silvola J, Martikainen PJ (1999) Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163–186

    Google Scholar 

  • Blackmer AM, Bremner JM (1978) Inhibitory effect of nitrate on the reduction of N2O to N2 by soil microorganisms. Soil Biology and Biochemistry 10:187–191

    Article  CAS  Google Scholar 

  • Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Research 34:3907–3916

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60:609–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. Journal of Clinical Pathology 13:156–159

    Article  CAS  Google Scholar 

  • Forsyth B, Cameron A, Miller S (1995) Explosives and water quality. Mining and the Environment, Proceedings of Sudbury 95:795–803

    Google Scholar 

  • Gaskell JF, Blackmer AM, Bremner JM (1981) Comparison of effects of nitrate, nitrite, and nitric-oxide on reduction of nitrous-oxide to dinitrogen by soil-microorganisms. Soil Science Society of America Journal 45:1124–1127

    Article  CAS  Google Scholar 

  • Goldberg SD, Knorr KH, Gebauer G (2008) N2O concentration and isotope signature along profiles provide deeper insight into the fate of N2O in soils. Isotopes in Environmental and Health Studies 44:377–391

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1(2):182–195

    Article  Google Scholar 

  • Haapalehto T, Kotiaho JS, Matilainen R, Tahvanainen T (2014) The effects of long-term drainage and subsequent restoration on water table level and pore water chemistry in boreal peatlands. Journal of Hydrology 519:1493–1505

    Article  CAS  Google Scholar 

  • Heikkinen K, Ihme R (1995) Retention of organic Fe–P-colloids from peat mining water in an overland flow wetland treatment system in northern Finland. Archieve fur Hydrobiologie 134:547–560

    CAS  Google Scholar 

  • Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28:95–123

    Article  Google Scholar 

  • Huttunen JT, Nykänen H, Turunen J, Martikainen PJ (2003) Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmospheric International 37:147–151

    Article  CAS  Google Scholar 

  • Johansson AE, Gustavsson A-M, Öquist MG, Svensson BH (2004) Methane emissions from a constructed wetland treating wastewater – seasonal and spatial distribution and dependence on edaphic factors. Water Research 38:3960–3970

    Article  CAS  Google Scholar 

  • Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air, and Soil Pollution 2:47–66

    Article  Google Scholar 

  • Kauppila P, Räisänen ML, Myllyoja S (eds) (2011) Best environmental practices in metal ore mining. Finnish Environment 29en/2011. https://helda.helsinki.fi/handle/10138/40006

  • Khanal SK, Huang J-C (2005) Effect of high influent sulfate on anaerobic wastewater treatment. Water Environment Research 77:3037–3046

    Article  CAS  Google Scholar 

  • Kolb S, Horn MA (2012) Microbial CH4 and N2O consumption in acidic wetlands. Frontiers in Microbiology 3:78. https://doi.org/10.3389/fmicb.2012.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskiaho J, Ekholm P, Räty M, Riihimäki J, Puustinen M (2003) Retaining agricultural nutrients in constructed wetlands – experiences under boreal conditions. Ecological Engineering 20:89–103

    Article  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421

    Article  CAS  Google Scholar 

  • Lai CY, Wen LL, Zhang Y, Luo SS, Wang QY, Luo YH, Chen R, Yang XE, Rittmann BE, Zhao HP (2016) Autotrophic antimonate bio-reduction using hydrogen as the electron donor. Water Research 88:467–474

    Article  CAS  Google Scholar 

  • Laine J, Vasander H (1996) Ecology and vegetation gradients of peatlands. In: Vasander H (ed) Peatlands in Finland. Finnish Peatland Society, Helsinki Finland, pp 10–19

    Google Scholar 

  • Langsch JE, Costa M, Moore L, Morais P, Bellezza A, Falcão S (2012) New technology for Arsenic removal from mining effluents. Journal of Materials Research and Technology 1:178–181

    Article  CAS  Google Scholar 

  • Lide DR, Frederikse HPR (eds) (1995) CRC handbook of chemistry and physics, 76th edition. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Liikanen A, Huttunen JT, Karjalainen SM, Heikkinen K, Väisänen TS, Nykänen H, Martikainen PJ (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters. Ecological Engineering 26:241–251

    Article  Google Scholar 

  • Liu YC, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of methanogenic archaea. Incredible Anaerobes: From Physiology to Genomics to Fuels 1125:171–189

    CAS  Google Scholar 

  • Lohila A, Aurela M, Hatakka J, Pihlatie M, Minkkinen K, Penttilä T, Laurila T (2010) Responses of N2O fluxes to temperature, water table and N deposition in a northern boreal fen. European Journal of Soil Science 61:651–661

    Article  CAS  Google Scholar 

  • Maljanen M, Shurpali N, Hytönen J, Mäkiranta P, Aro L, Potila H, Laine J, Li C, Martikainen PJ (2012) Afforestation does not necessarily reduce nitrous oxide emissions from managed boreal peat soils. Biogeochemistry 108:199–218

    Article  CAS  Google Scholar 

  • Mandic-Mulec I, Ausec L, Danevčič T, Levičnik-Höfferle S, Jerman V, Kraighner B (2014) Microbial community structure and function in peat soil. Food Technology and Biotechnology 52:180–187

    CAS  Google Scholar 

  • Martikainen PJ, Nykänen H, Crill P, Silvola J (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53

    Article  CAS  Google Scholar 

  • McCartney DM, Oleszkiewicz JA (1993) Competition between methanogens and sulfate reducers – Effect of COD/sulfate ratio and acclimation. Water Environment Research 65:655–664

    Article  CAS  Google Scholar 

  • Meyer J, Michalke K, Kouril T, Hensel R (2008) Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Systematic and Applied Microbiology 31:81–87

    Article  CAS  Google Scholar 

  • Nordström DK (2011) Hydrogeochemical processes governing the origin: transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied Geochemistry 26:1777–1791

    Article  Google Scholar 

  • O’Sullivan AD, McCabe OM, Murray DA, Otte ML (1999) Wetlands for rehabilitation of metal mine wastes. Biology and Environment: Proceedings of the Royal Irish Academy 99B:11–17

    Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Applied and Environmental Microbiology 44:1270–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paavilainen E, Päivänen J (1995) Peatland forestry: ecology and principles, Ecological Studies, vol 111. Springer, Berlin

    Google Scholar 

  • Palmer K, Horn MA (2012) Actinobacterial nitrate reducers and Proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Applied and Environmental Microbiology 78:5584–5596

    Article  CAS  Google Scholar 

  • Palmer K, Horn MA (2015) Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is N-oxide limited. PLoS ONE 10:e0123123. https://doi.org/10.1371/journal.pone.0123123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer K, Drake HL, Horn MA (2010) Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen. Applied and Environmental Microbiology 76:1125–1134

    Article  CAS  Google Scholar 

  • Palmer K, Biasi C, Horn MA (2012) Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. The ISME Journal 6:1058–1077

    Article  CAS  Google Scholar 

  • Palmer K, Ronkanen A-K, Kløve B (2015) Efficient removal of arsenic, antimony and nickel from mine wastewaters in Northern treatment peatlands and potential risks in their long-term use. Ecological Engineering 75:350–364

    Article  Google Scholar 

  • Parkin GF, Lynch NA, Kuo W-C, Van Keuren EL, Bhattacharya SK (1990) Interactions between sulfate reducers and methanogens fed acetate and propionate. Research Journal of the Water Pollution Control Federation 62:780–788

    CAS  Google Scholar 

  • Paulo LM, Ramiro-Garcia K, van Mourik S, Stams AJM, Sousa DZ (2017) Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation. Frontiers in Microbiology 8:1341

    Article  Google Scholar 

  • Pirinen P, Simola H, Aalto J, Kaukoranta J-P, Karlsson P, Ruuhela R (2012) Tilastoja Suomen ilmastosta. Finnish Meteorological Institute Reports 2012:2, Helsinki, Finland. http://hdl.handle.net/10138/35880

  • Räisänen ML, Lestinen P, Kuivasaari T (2001) The retention of metals and Sulphur in a natural wetland—preliminary results from the old Otravaara pyrite mine eastern Finland. In: Proceeding of International Conference on Mining and the Environment, Skellefteå, Sweden, The Swedish Mining Association, vol 2, pp 662–670

    Google Scholar 

  • Rannik Ü, Haapanala S, Shurpali N, Mammarella I, Lind S, Hyvönen N, Peltola O, Zahniser M, Martikainen P, Vesala T (2015) Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions. Biogeosciences 12:415–432

    Article  Google Scholar 

  • Ronkanen A-K, Kløve B (2009) Long-term phosphorus and nitrogen removal processes and preferential flow paths in Northern constructed peatlands. Ecological Engineering 35:843–855

    Article  Google Scholar 

  • Ronkanen A-K, Marttila H, Celebi A, Kløve B (2016) The role of aluminium and iron in phosphorus removal by treatment peatlands. Ecological Engineering 86:190–201

    Article  Google Scholar 

  • Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim D-G, Zaman M, Tillman RW (2013) Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Science of The Total Environment 465:173–195

    Article  CAS  Google Scholar 

  • Sander R (1999) Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry (Version 3) http://www.henrys-law.org/henry.pdf

  • Silvan N, Tuittila E-S, Kitunen V, Vasander H, Laine J (2005) Nitrate uptake by Eriophorum vaginatum controls N2O production in a restored peatland. Soil Biology and Biochemistry 37:1519–1526

    Article  CAS  Google Scholar 

  • Simek M, Cooper JE (2002) The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53:345–354

    Article  CAS  Google Scholar 

  • Søvik AK, Kløve B (2007) Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Science of The Total Environment 380:28–37

    Article  Google Scholar 

  • Takakai F, Desyatkin AR, Lopez CML, Fedorov AN, Desyatkin RV, Hatano R (2008) CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, Eastern Siberia, Russia. Journal of Geophysical Research 113:G02002. https://doi.org/10.1029/2007JG000521

    Article  CAS  Google Scholar 

  • Tanner CC, Adams DD, Downes MT (1997) Methane emissions from constructed wetlands treating agricultural wastewaters. Journal of Environmental Quality 26:1056–1062

    Article  CAS  Google Scholar 

  • ter Braak C, Šmilauer P (2012) CANOCO Reference manual user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca, New York, USA. 496 p

  • Tuusjärvi M (2013) From a mine to you – Sustainability of the Finnish mining sector in the context of global supply chains of metals. Academic dissertation, Unigrafia Helsinki

    Google Scholar 

  • van Cleemput O (1998) Subsoils: chemo- and biological denitrification, N2O and N2 emissions. Nutrient Cycling in Agroecosystems 52:187–194

    Article  Google Scholar 

  • Vandieken V, Finke N, Thamdrup B (2014) Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment. FEMS Microbiology Ecology 87:733–745

    Article  CAS  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environtal Science and Technology 45:61–69

    Article  CAS  Google Scholar 

  • Wilson D, Blain D, Couwenberg J, Evans CD, Murdiyarso D, Page SE, Renou-Wilson F, Rieley JO, Sirin A, Strack M, Tuittila E-S (2016) Greenhouse gas emission factors associated with rewetting of organic soils. Mires and Peat 17:1–28

    Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 1–38

    Google Scholar 

  • Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Dinardo SJ, Dengel S, Sweeney C, Karion A, Chang RY-W, Henderson JM, Murphy PC, Goodrich JP, Moreaux V, Liljedahl A, Watts JD, Kimball JS, Lipson DA, Oechel WC (2016) Cold season emissions dominate the Arctic tundra methane budget. PNAS 113:40–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Hanne Säppi for the help in the laboratory analysis. The project was funded by the Academy of Finland, Niemi foundation, Maa- ja vesitekniikan tuki ry and Maj and Tor Nessling Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja Maljanen.

Electronic supplementary material

ESM 1

(DOC 619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maljanen, M., Kujala, K., Reinikainen, J. et al. Greenhouse Gas Dynamics of a Northern Boreal Peatland Used for Treating Metal Mine Wastewater. Wetlands 38, 905–917 (2018). https://doi.org/10.1007/s13157-018-1040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-018-1040-7

Keywords

Navigation