Skip to main content

Advertisement

Log in

Fine-Scale Monitoring of Long-term Wetland Loss Using LiDAR Data and Historical Aerial Photographs: the Example of the Couesnon Floodplain, France

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Wetland area has decreased in most parts of the world and remains threatened by human pressures. However, wetland loss is difficult to accurately detect, delineate and quantify. While wetland distribution is influenced mainly by landform, LiDAR data provide accurate digital elevation models that can be used to delineate wetlands. Our objective was to map wetland loss at a fine-scale using LiDAR data and historical aerial photographs based on a functional typology that identifies potential, existing and efficient wetlands. The study focused on a 132 km2 site with valley bottom wetlands located in western France. Boundaries of potential wetlands were extracted from a LiDAR-derived Digital Terrain Model that was standardized according to channel network elevation. We identified existing wetlands using interpretation of aerial photographs acquired in 1952, 1978 and 2012. We used multiple correspondence analysis to identify different types of wetland loss. Results show that potential wetlands were successfully delineated at 1:5000 (88–90% overall accuracy) and that 14% of existing wetland area was lost. This highlights the importance of identifying “negotiation areas” where wetland restoration is a priority. The results also reveal two main types of wetland loss based on area, geomorphic context, land cover and period of loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams PN, Slingerland RL, Smith ND (2004) Variations in natural levee morphology in anastomosed channel flood plain complexes. Geomorphology 61:127–142. https://doi.org/10.1016/j.geomorph.2003.10.005

    Article  Google Scholar 

  • Alber A, Piégay H (2011) Spatial disaggregation and aggregation procedures for characterizing fluvial features at the network-scale: Application to the Rhône basin (France). Geomorphology 125:343–360. https://doi.org/10.1016/j.geomorph.2010.09.009

  • Beven K, Kirkby M (1979) A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24:43–69

    Article  Google Scholar 

  • Berthier, L., Guzmova, L., Laroche, B., Lehmann, S., Squivident, H., Martin, M., Chenu, J.-P., Thiry, E., Lemercier, B., Bardy, M., Mérot, P., & Walter, C. (2014) Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling. EGU General Assembly Conference Abstracts, 16, 12780.

  • Boon PI, Raulings E, Roach M, Morris K (2008) Vegetation changes over a four decade period in Dowd morass, a brackish-water wetland of the Gippsland Lakes, south-eastern Australia. Proceedings of the Royal Society of Victoria 120:403–418

    Google Scholar 

  • Brinson MM (1993) Changes in the functioning of wetlands along environmental gradients. Wetlands 13:65–74

    Article  Google Scholar 

  • Brinson M (2009) The United States HGM (Hydrogeomorphic) approach. The Wetlands Handbook, Wiley-Blackwell. Edward Maltby & Tom Barker, Oxford, pp 486–512

    Google Scholar 

  • Cazals C, Rapinel S, Frison P-L et al (2016) Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution sentinel-1A images. Remote Sensing 8:570. https://doi.org/10.3390/rs8070570

    Article  Google Scholar 

  • Chasmer L, Hopkinson C, Veness T et al (2014) A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sensing of Environment 143:73–84. https://doi.org/10.1016/j.rse.2013.12.016

    Article  Google Scholar 

  • Chasmer L, Hopkinson C, Montgomery J, Petrone R (2016) A physically based terrain morphology and vegetation structural classification for wetlands of the Boreal Plains, Alberta, Canada. Canadian Journal of Remote Sensing 42:521–540. https://doi.org/10.1080/07038992.2016.1196583

    Article  Google Scholar 

  • Clément J-C, Aquilina L, Bour O et al (2003) Hydrological flowpaths and nitrate removal rates within a riparian floodplain along a fourth-order stream in Brittany (France). Hydrological Processes 17:1177–1195. https://doi.org/10.1002/hyp.1192

    Article  Google Scholar 

  • Congalton RG, Green K (2008) Assessing the accuracy of remotely sensed data: principles and practices, Second edn. CRC Press, Boca Raton

  • Corcoran J, Knight J, Pelletier K et al (2015) The effects of point or polygon based training data on RandomForest classification accuracy of wetlands. Remote Sensing 7:4002–4025. https://doi.org/10.3390/rs70404002

    Article  Google Scholar 

  • Cowardin LM (1979) Classification of wetlands and deepwater habitats of the United States. Fish and Wildlife Service, US Dept. of the Interior, Washington, DC

    Google Scholar 

  • Cowardin LM, Myers VI (1974) Remote sensing for identification and classification of wetland vegetation. Journal of Wildlife Management 38:308–314

    Article  Google Scholar 

  • Dimitrakopoulos PG, Jones N, Iosifides T et al (2010) Local attitudes on protected areas: evidence from three Natura 2000 wetland sites in Greece. Journal of Environmental Management 91:1847–1854. https://doi.org/10.1016/j.jenvman.2010.04.010

    Article  PubMed  Google Scholar 

  • Dvorett D, Davis C, Papeş M (2016) Mapping and hydrologic attribution of temporary wetlands using recurrent Landsat imagery. Wetlands 36:431–443. https://doi.org/10.1007/s13157-016-0752-9

    Article  Google Scholar 

  • Emmerson M, Morales MB, Oñate JJ et al (2016) Chapter two - how agricultural intensification affects biodiversity and ecosystem services. In: Alex J, Dumbrell RLK, Woodward G (eds) Large-scale ecology: model systems to global perspectives. Academic Press, Cambridge, pp 43–97

    Chapter  Google Scholar 

  • Ewel KC (2009) Introduction – how do wetlands fail? In: Maltby E, Barker T (eds) The wetlands handbook. Wiley-Blackwell, Oxford. https://doi.org/10.1002/9781444315813.ch27

  • Frieswyk CB, Zedler JB (2007) Vegetation Change in Great Lakes Coastal Wetlands: Deviation from the Historical Cycle. Journal of Great Lakes Research 33:366–380. https://doi.org/10.3394/0380-1330(2007)33[366:VCIGLC]2.0.CO;2

  • Gabrielsen CG, Murphy MA, Evans JS (2016) Using a multiscale, probabilistic approach to identify spatial-temporal wetland gradients. Remote Sensing of Environment 184:522–538

    Article  Google Scholar 

  • Gallant AL (2015) The challenges of remote monitoring of wetlands. Remote Sensing 7:10938–10950. https://doi.org/10.3390/rs70810938

    Article  Google Scholar 

  • Gerakis A, Kalburtji K (1998) Agricultural activities affecting the functions and values of Ramsar wetland sites of Greece. Agriculture, Ecosystems and Environment 70:119–128. https://doi.org/10.1016/S0167-8809(98)00119-4

    Article  Google Scholar 

  • Gerard F, Petit S, Smith G, et al (2010) Land cover change in Europe between 1950 and 2000 determined employing aerial photography. Progress in Physical Geography 34:183–205. https://doi.org/10.1177/030913330936014

  • Godet L, Thomas A (2013) Three centuries of land cover changes in the largest French Atlantic wetland provide new insights for wetland conservation. Applied Geography 42:133–139. https://doi.org/10.1016/j.apgeog.2013.05.011

  • Goodale R, Hopkinson C, Colville D, Amirault-Langlais D (2007) Mapping piping plover (Charadrius melodus melodus) habitat in coastal areas using airborne lidar data. Canadian Journal of Remote Sensing 33:519–533. https://doi.org/10.5589/m07-058

    Article  Google Scholar 

  • Hettiarachchi M, Morrison TH, McAlpine C (2015) Forty-three years of Ramsar and urban wetlands. Global Environmental Change 32:57–66. https://doi.org/10.1016/j.gloenvcha.2015.02.009

  • Hogg A, Todd K (2007) Automated discrimination of upland and wetland using terrain derivatives. Canadian Journal of Remote Sensing 33:S68–S83

    Article  Google Scholar 

  • Hopkinson C, Chasmer LE, Sass G et al (2005) Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment. Canadian Journal of Remote Sensing 31:191–206

    Article  Google Scholar 

  • Hopkinson C, Crasto N, Marsh P et al (2011) Investigating the spatial distribution of water levels in the Mackenzie Delta using airborne LiDAR. Hydrological Processes 25:2995–3011

    Google Scholar 

  • Houet T, Loveland T, Hubert-Moy L et al (2010) Exploring subtle land use and land cover changes: a framework for future landscape studies. Landscape Ecology 25:249–266

    Article  Google Scholar 

  • Kadmon R, Harari-Kremer R (1999) Studying Long-Term Vegetation Dynamics Using Digital Processing of Historical Aerial Photographs. Remote Sensing of Environment 68:164–176. https://doi.org/10.1016/S0034-4257(98)00109-6

  • Kamlun KU, Bürger Arndt R, Phua M-H (2016) Monitoring deforestation in Malaysia between 1985 and 2013: insight from south-western Sabah and its protected peat swamp area. Land Use Policy 57:418–430. https://doi.org/10.1016/j.landusepol.2016.06.011

    Article  Google Scholar 

  • Kloiber SM, Macleod RD, Smith AJ et al (2015) A semi-automated, multi-source data fusion update of a wetland inventory for east-Central Minnesota, USA. Wetlands 35:335–348. https://doi.org/10.1007/s13157-014-0621-3

    Article  Google Scholar 

  • Knight JF, Tolcser BP, Corcoran JM, Rampi LP (2013) The effects of data selection and thematic detail on the accuracy of high spatial resolution wetland classifications. Photogrammetric Engineering and Remote Sensing 79:613–623. 10.14358/PERS.79.7.613

    Article  Google Scholar 

  • Lague D, Launeau P, Michon C et al (2016) A geomorphologist’s dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar. EGU General Assembly Conference Abstracts 18:EGU2016–EG12238

    Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: a package for multivariate analysis. Journal of Statistical Software 25:1–18. 10.18637/jss.v025.i01

    Article  Google Scholar 

  • Legleiter CJ, Overstreet BT, Glennie CL et al (2015) Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments. Earth Surface Processes and Landforms 41(3):344–363

    Article  Google Scholar 

  • Leonard PB, Baldwin RF, Homyack JA, Wigley TB (2012) Remote detection of small wetlands in the Atlantic coastal plain of North America: local relief models, ground validation, and high-throughput computing. Forest Ecology and Management 284:107–115. https://doi.org/10.1016/j.foreco.2012.07.034

    Article  Google Scholar 

  • Lespez L, Viel V, Rollet AJ, Delahaye D (2015) The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects. Geomorphology 251:64–76. https://doi.org/10.1016/j.geomorph.2015.05.015

  • Lindsay J, Dhun K (2015) Modelling surface drainage patterns in altered landscapes using LiDAR. International Journal of Geographical Information Science 29:397–411

    Article  Google Scholar 

  • Liu X (2008) Airborne LiDAR for DEM generation: some critical issues. Progress in Physical Geography 32:31–49. https://doi.org/10.1177/0309133308089496

    Article  Google Scholar 

  • Mallinis G, Emmanoloudis D, Giannakopoulos V et al (2011) Mapping and interpreting historical land cover/land use changes in a Natura 2000 site using earth observational data: the case of Nestos delta, Greece. Applied Geography 31:312–320. https://doi.org/10.1016/j.apgeog.2010.07.002

    Article  Google Scholar 

  • Maltby E (ed) (2009) Functional assessment of wetlands: towards evaluation of ecosystem services. Woodhead Publishing, Cambridge

    Google Scholar 

  • Maltby E, Barker T (2009) The wetlands handbook. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Maltby E, Acreman MC (2011) Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrological Sciences Journal 56:1341–1359. https://doi.org/10.1080/02626667.2011.631014

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • Mérot P, Hubert-Moy L, Gascuel-Odoux C et al (2006) A method for improving the management of controversial wetland. Environmental Management 37:258–270

    Article  PubMed  Google Scholar 

  • Millard K, Richardson M (2013) Wetland mapping with LiDAR derivatives, SAR polarimetric decompositions, and LiDAR--SAR fusion using a random forest classifier. Canadian Journal of Remote Sensing 39:290–307

    Article  Google Scholar 

  • Millard K, Richardson M (2015) On the importance of training data sample selection in random Forest image classification: a case study in peatland ecosystem mapping. Remote Sensing 7:8489–8515. https://doi.org/10.3390/rs70708489

    Article  Google Scholar 

  • Moser L, Schmitt A, Wendleder A, Roth A (2016) Monitoring of the lac bam wetland extent using dual-polarized X-band SAR data. Remote Sensing 8:302. https://doi.org/10.3390/rs8040302

    Article  Google Scholar 

  • Mui A, He Y, Weng Q (2015) An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing 109:30–46. https://doi.org/10.1016/j.isprsjprs.2015.08.005

    Article  Google Scholar 

  • Murphy PNC, Ogilvie J, Connor K, Arp PA (2007) Mapping wetlands: a comparison of two different approaches for New Brunswick, Canada. Wetlands 27:846–854. https://doi.org/10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2

    Article  Google Scholar 

  • Murphy PNC, Ogilvie J, Arp P (2009) Topographic modelling of soil moisture conditions: a comparison and verification of two models. European Journal of Soil Science 60:94–109. https://doi.org/10.1111/j.1365-2389.2008.01094.x

    Article  Google Scholar 

  • Necsoiu M, Dinwiddie CL, Walter GR et al (2013) Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska. Environmental Research Letters 8:025007. https://doi.org/10.1088/1748-9326/8/2/025007

    Article  Google Scholar 

  • Niculescu S, Lardeux C, Grigoras I, et al (2016) Synergy between LiDAR, RADARSAT-2, and Spot-5 images for the detection and mapping of wetland vegetation in the Danube Delta. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing pp:1–16. doi:https://doi.org/10.1109/JSTARS.2016.2545242

  • Ottinger M, Kuenzer C, Liu G et al (2013) Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Applied Geography 44:53–68. https://doi.org/10.1016/j.apgeog.2013.07.003

    Article  Google Scholar 

  • Pingel TJ, Clarke KC, McBride WA (2013) An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 77:21–30. https://doi.org/10.1016/j.isprsjprs.2012.12.002

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rampi LP, Knight JF, Pelletier KC (2014) Wetland mapping in the upper Midwest United States. Photogrammetric Engineering and Remote Sensing 80:439–448. 10.14358/PERS.80.5.439

    Article  Google Scholar 

  • Rapinel S, Hubert-Moy L, Clément B et al (2015a) Ditches’ network extraction and hydrogeomorphological characterization using LiDAR-derived DTM in wetlands. Hydrology Research 46:276–289. https://doi.org/10.2166/nh.2013.121

    Article  Google Scholar 

  • Rapinel S, Hubert-Moy L, Clément B (2015b) Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping. International Journal of Applied Earth Observation and Geoinformation 37:56–64. https://doi.org/10.1016/j.jag.2014.09.002

    Article  Google Scholar 

  • Rapinel S, Hubert-Moy L, Clément B, Maltby E (2016) Mapping wetland functions using earth observation data and multi-criteria analysis. Environmental Monitoring and Assessment 188:641. https://doi.org/10.1007/s10661-016-5644-1

    Article  PubMed  Google Scholar 

  • Robinson JS, Sivapalan M, Snell JD (1995) On the relative roles of hillslope processes, channel routing, and network geomorphology in the hydrologic response of natural catchments. Water Resources Research 31:3089–3101

    Article  Google Scholar 

  • Szporak-Wasilewska S, Mirosław-Świątek D, Grygoruk M, et al (2015) Processing of airborne laser scanning data to generate accurate DTM for floodplain wetland. Proceedings of SPIE 9637:963720–963720–11. doi:https://doi.org/10.1117/12.2195223

  • Tian B, Zhou Y-X, Thom RM, et al (2015) Detecting wetland changes in shanghai, China using FORMOSAT and Landsat TM imagery. Journal of Hydrology 529, Part 1:1–10. doi:https://doi.org/10.1016/j.jhydrol.2015.07.007

  • Töyrä J, Pietroniro A, Hopkinson C, Kalbfleisch W (2003) Assessment of airborne scanning laser altimetry (lidar) in a deltaic wetland environment. Canadian Journal of Remote Sensing 29:718–728

    Article  Google Scholar 

  • Vacquié L, Houet T (2012) Cartographie des zones humides de montagne par télédétection. Potentialités à très haute résolution spatiale Revue Internationale de Géomatique:497–518

  • VanDerWal J, Falconi L, Januchowski S, et al (2014) Package ‘SDMTools’

  • Weinstein MP, Balletto JH, Teal JM, Ludwig DF (1996) Success criteria and adaptive management for a large-scale wetland restoration project. Wetlands Ecology and Management 4:111–127. https://doi.org/10.1007/BF01876232

    Article  Google Scholar 

  • White B, Ogilvie J, Campbell DMHMH et al (2012) Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Canadian Water Resources Journal / Revue canadienne des ressources hydriques 37:333–347. https://doi.org/10.4296/cwrj2011-909

    Article  Google Scholar 

  • Williams DC, Lyon JG (1997) Historical aerial photographs and a geographic information system (GIS) to determine effects of long-term water level fluctuations on wetlands along the St. Marys River, Michigan, USA. Aquatic Botany 58:363–378. https://doi.org/10.1016/S0304-3770(97)00046-6

    Article  Google Scholar 

  • Wu Q, Lane CR (2016) Delineation and quantification of wetland depressions in the prairie pothole region of North Dakota. Wetlands 36:215–227

    Article  Google Scholar 

  • Zedler J (2004) Compensating for wetland losses in the United States. Ibis 146:92–100

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Centre National de la Recherche Scientifique (Zone Atelier program) and the French Ministry of Ecology and Sustainable Development (CarHAB program). The authors are grateful to Jean Nabucet (LETG Rennes) for his help with fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rapinel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapinel, S., Clément, B., Dufour, S. et al. Fine-Scale Monitoring of Long-term Wetland Loss Using LiDAR Data and Historical Aerial Photographs: the Example of the Couesnon Floodplain, France. Wetlands 38, 423–435 (2018). https://doi.org/10.1007/s13157-017-0985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0985-2

Keywords

Navigation