Skip to main content
Log in

Standing Dead Trees are a Conduit for the Atmospheric Flux of CH4 and CO2 from Wetlands

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

In vegetated wetland ecosystems, plants can be a dominant pathway in the atmospheric flux of methane, a potent greenhouse gas. Although the roles of herbaceous vegetation and live woody vegetation in this flux have been established, the role of dead woody vegetation is not yet known. In a restored wetland of North Carolina’s coastal plain, static flux chambers were deployed at two heights on standing dead trees to determine if these structures acted as a conduit for methane emissions. Methane fluxes to the atmosphere were measured in five of the chambers, with a mean flux of 0.4 ± 0.1 mg m−2 h−1. Methane consumption was also measured in three of the chambers, with a mean flux of −0.6 ± 0.3 mg m−2 h−1. Standing dead trees were also a source of the flux of CO2 (114.6 ± 23.8 mg m−2 h−1) to the atmosphere. Results confirm that standing dead trees represent a conduit for the atmospheric flux of carbon gases from wetlands. However, several questions remain regarding the ultimate source of these carbon gases, the controls on the magnitude and direction of this flux, the mechanisms that induce this flux, and the importance of this pathway relative to other sources at the landscape level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ardón M, Montanair S, Morse JL, Doyle MD, Bernhardt ES (2010a) Phosphorous export from a restored wetland ecosystem in response to natural and experimental hydrologic fluctuations. Journal of Geophysical Research 115:G04031

    Article  Google Scholar 

  • Ardón M, Morse JL, Doyle ME, Bernhardt ES (2010b) The water quality consequences of restoring wetland hydrology to a large agricultural watershed in the southeastern coastal plain. Ecosystems 13:1060–1078

    Article  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    Article  CAS  PubMed  Google Scholar 

  • Brix H (1990) Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Research 2:259–266

    Article  Google Scholar 

  • Carmichael MJ, Smith WK (2016a) Growing season ecophysiology of Taxodium distichum (L.) Rich. (bald cypress) saplings in a restored wetland: a baseline for restoration practice. Botany:1115–1125

  • Carmichael MJ, Smith WK (2016b) Standing dead trees: a conduit for the amospheric flux of greenhouse gases from wetlands? Wetlands 36:1183–1188

    Article  Google Scholar 

  • Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK (2014) The role of vegetation in the annual flux of methane to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 119:1–24

    Article  CAS  Google Scholar 

  • Carter LJ (1975) Agriculture: a new frontier in coastal North Carolina. Science 189:271–275

    Article  CAS  PubMed  Google Scholar 

  • Chanton JP, Martens CA, Kelley CA (1989) Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography 34:807–819

    Article  CAS  Google Scholar 

  • Clements WE, Wilkening MH (1974) Atmospheric pressure effects on 222Rn transport across the Earth-air interface. Journal of Geophysical Research 79:5025–5029

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Sass-Klaassen U, Poorter L, van Geffen KG, van Logtestijn RSP, van Hal J, Goudzwaard L, Sterck FJ, Klaassen RKMW, Freschet GT, van der Wal A, Eshuis J, Zuo H, de Boer W, Lamers T, Weemstra M, Cretin V, Martin R, den Ouden J, Berg MP, Aerts R, Mohren MJ, Hefting MM (2012) Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. Ambio 41:231–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Covey KR, Wood SA, Warren RJ II, Lee X, Bradford MA (2012) Elevated methane concentrations in trees of an upland forest. Geophysical Research Letters 39:L15705

    Article  Google Scholar 

  • Covey KR, Bueno de Mesquita CP, Oberle B, Maynard DS, Bettigole C, Crowther TW, Duguid MC, Steven B, Zanne AE, Lapin M, Ashton MS, Oliver CD, Lee X, Bradford MA (2016) Greenhouse trace gases in deadwood. Biogeochemistry 130:215–226

    Article  CAS  Google Scholar 

  • Dacey JWH, Klug MJ (1979) Methane efflux from lake sediments through water lilies. Science 203:1253–1255

    Article  CAS  PubMed  Google Scholar 

  • DelSontro T, McGinnis DF, Wehrli B, Ostrovsky I (2014) Size does matter: importance of large bubbles and small-scale hot spots for methane transport. Environmental Science & Technology 49:1268–1276

    Article  Google Scholar 

  • Garnet KN, Megonigal JP, Litchfield C, Taylor GE Jr (2005) Physiological control of leaf methane emission from wetland plants. Aquatic Botany 81:141–155

    Article  CAS  Google Scholar 

  • Gauci V, Gowing DJG, Hornibrook ERC, Davis JM, Dise NB (2010) Woody stem methane emission in mature wetland alder trees. Atmospheric Envionment 44:2157–2160

    Article  CAS  Google Scholar 

  • Gilbert S, Lackstrom K, Tufford D (2012) The impact of drought on coastal ecosystems in the Carolinas. Research Report: CISA-2012-01. Carolinas Integrated Sciences and Assessments, Columbia, SC

    Google Scholar 

  • Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling DJ, Hearty PJ, Hoegh-Guldberg O, Hsu S-L, Parmesan C, Rockstrom J, Rohling EJ, Sachs J, Smith P, Steffen K, Susteren LV, von Schuckmann K, Zachos JC (2013) Assessing "dangersous climate change:" required reduction of carbon emissions to protect young people, future generations and nature. PLoS One 8:e81648

    Article  PubMed  PubMed Central  Google Scholar 

  • Harmon ME (1982) Decomposition of standing dead trees in the southern Appalachian Mountains. Oecologia 52:214–215

    Article  PubMed  Google Scholar 

  • Hauer ME, Evans JM, Mishra DR (2016) Millions projected to be at risk from sea-level rise in the continental United States. Nature Climate Change 6:691–695

    Article  Google Scholar 

  • Helton AM, Bernhardt ES, Fedders A (2014) Biogeochemical regime shifts in coastal landscapes: the contrasting effects of saltwater intrusion and agricultural pollution on greenhouse gas emissions from a freshwater wetland. Biogeochemistry 120:133–147

    Article  CAS  Google Scholar 

  • Hietala A, Dörsch P, Kvaalen H, Solheim H (2015) Carbon dioxide and methane formation in Norway Spruce stems infected by white-rot fungi. Forests 6:3304–3325

    Article  Google Scholar 

  • Hook DD (1984a) Adaptations to flooding with freshwater. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, New York, pp 265–294

    Chapter  Google Scholar 

  • Hook DD (1984b) Waterlogging tolerance of lowland tree species of the South. Southern Journal of Applied Forestry 8:136–149

    Google Scholar 

  • Hook DD, Brown CL (1972) Permeability of the cambium to air in trees adapted to wet habitats. Botanical Gazette 133:304–310

    Article  Google Scholar 

  • Keppler F, Hamilton JTG, Braß M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Buruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quére C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Stelle LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nature Geoscience 6:813–823

    Article  CAS  Google Scholar 

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiology Monograph 1:1–29

    Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296:1–22

    Article  Google Scholar 

  • Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nature Communications 3:1046

    Article  PubMed  Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest systems. Global Change Biology 13:2089–2109

    Article  Google Scholar 

  • Livingston GP, Hutchinson GL (2009) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Wiley-Blackwell, Cambridge, Massachusetts, pp 14–51

    Google Scholar 

  • Machacova K, Papen H, Kreuzwieser J, Renenberg H (2013) Inundation strongly stimulates nitrous oxide emissions from stems of the upland tree Fagus sylvatica and the riparian tree Alnus glutinosa. Plant and Soil 364:287–301

    Article  CAS  Google Scholar 

  • Machacova K, Bäck J, Vanhatalo A, Halmeenmäki E, Kolari P, Mammarella I, Pumpanen J, Acosta M, Urban O, Pihlatie M (2016) Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest. Scientific Reports 6:23401

    Article  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles 1:61–86

    Article  CAS  Google Scholar 

  • Mattson MD, Likens GE (1990) Air pressure and methane fluxes. Nautre 347:718–719

    Article  Google Scholar 

  • McInerney E, Helton AM (2016) The effects of soil moisture and emergent herbaceous vegetation on carbon emissions from constructed wetlands. Wetlands 36:275–284

    Article  Google Scholar 

  • McLeod AR, Fry SC, Loake GJ, Messenger DJ, Reay DS, Smith KA, Yum B-W (2008) Ultraviolet radiation drives methane emissions from terrestrial plant pectins. The New Phytologist 180:124–132

    Article  CAS  PubMed  Google Scholar 

  • Melillo JM, Richmond T, Yohe GW, eds. (2014) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, 841 pp

  • Morse JL, Ardón M, Bernhardt ES (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecological Applications 22:264–280

    Article  PubMed  Google Scholar 

  • Myhre G, Shindell DT, Breon FM, Collins W, Fuglestvelt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stoker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Needham R (2006) Implementation plan for agricultural restoration at Timberlake Farms. Needham Environmental Incorporated, Wilmington, NC

    Google Scholar 

  • Newton A (2016) Shifting sources. Nature Geoscience 9:346

    Article  Google Scholar 

  • Oberle B, Covey KR, Dunham KM, Hernandez EJ, Walton ML, Young DF, Zanne AE (2017) Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana. Ecosystems: 1–13

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan S-M, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292:2316–2320

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Philips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world's forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Pangala SR, Moore S, Horinbrook ERC, Gauci V (2012) Trees are major conduits for methane egress from tropical forested wetlands. The New Phytologist 197:524–531

    Article  Google Scholar 

  • Pangala SR, Hornibrook ERC, Gowing DJ, Gauci V (2015) The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Global Change Biology 21:2642–2654

    Article  Google Scholar 

  • Pitz S, Megonigal JP (2017) Temperate forest methane sink diminished by tree emissions. The New Phytologist 214:1432–1439

    Article  CAS  PubMed  Google Scholar 

  • Poindexter CM, Baldocchi DD, Matthes JH, Knox SH, Variano EA (2016) The contribution of an overlooked transport process to a wetland's methane emissions. Geophysical Research Letters 43:6276–6284

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WI, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Sinninghe Damsté JS, Lamers LPM, Roelofs JGM, Op den Camp HJM, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156

    Article  CAS  PubMed  Google Scholar 

  • Rusch H, Rennenberg H (1998) Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant and Soil 201:1–7

    Article  CAS  Google Scholar 

  • Sallenger AH Jr, Doran KS, Howd PA (2012) Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change 2:884–888

    Article  Google Scholar 

  • Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG (2016) The growing role of methane in anthropogenic climate change. Environmental Research Letters 11:12027

    Article  Google Scholar 

  • Schlesinger WH, Bernhardt ES (2013) Biogoechemistry: an analysis of global change, 3rd edn. Elsevier, Waltham

    Google Scholar 

  • Schütz H, Schröder P, Rennenberg H (1991) Role of plants in regulating the methane flux to the atmosphere. In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic Press Inc., New York, pp 29–63

    Chapter  Google Scholar 

  • Schwietzke S, Sherwood OA, Bruhwiler LMP, Miller JB, Etiope G, Dlugokencky EJ, Michel SE, Arling VA, Vaughn BH, White JWC, Tans PP (2016) Upward revision of global fossil fuel methane emissions based on isotope data. Nature 538:88–91

    Article  CAS  PubMed  Google Scholar 

  • Sebacher DI, Harriss RC, Bartlett KB (1985) Methane emissions to the atmosphere through aquatic plants. Journal of Environmental Quality 14:40–46

    Article  CAS  Google Scholar 

  • Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE (2009) Improved attribution of climate forcing to emissions. Science 326:716–718

    Article  CAS  PubMed  Google Scholar 

  • Smith LK, Lewis WM Jr (1992) Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. Global Biogeochemical Cycles 6:323–338

    Article  CAS  Google Scholar 

  • Stanley EH, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecological Monographs 86:146–171

    Article  Google Scholar 

  • Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S (2015) Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry 123:349–362

    Article  CAS  Google Scholar 

  • Teskey RO, Saveyn A, Steppe K, McGuire MA (2008) Origin, fate and significance of CO2 in tree stems. The New Phytologist 177:17–32

    CAS  PubMed  Google Scholar 

  • Titus JG, Richman C (2001) Maps of lands vulnerable to sea level rise: modeled elevations along the US Atlantic and Gulf coasts. Climate Research 18:205–228

    Article  Google Scholar 

  • Vigano I, van Weelden H, Holzinger R, Keppler F, Röckmann T (2008) Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences Discussions 5:243–270

    Article  Google Scholar 

  • Visser EJW, Bögemann GM (2003) Measurement of porosity in very small samples of plant tissue. Plant and Soil 253:81–90

    Article  CAS  Google Scholar 

  • Vogel S, Ellington CP Jr, Kilgore DL Jr (1973) Wind-induced ventilation of the burrow of the prairie-dog, Cynomys ludovicianus. Journal of Comparative Physiology 85:1–14

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin IIIFS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-P, Gu Q, Deng F-D, Huang J-H, Megonigal JP, Yu Q, Lü X-T, Li L-H, Chang S, Zhang Y-H, Feng J-C, Han X-G (2016) Methane emissions from the trunks of living trees on upland soils. The New Phytologist 211:429–439

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-P, Han S-J, Li H-L, Deng F-D, Zheng Y-H, Liu H-F, Han X-G (2017) Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research – Biogeosciences. https://doi.org/10.1002/2017JG003991

  • Warner DL, Villarreal S, McWilliams K, Inamdar S, Vargas R (2017) Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems. https://doi.org/10.1007/s10021-016-0106-8

  • Woodall CW, Domke GM, MacFarlane DW, Oswalt CM (2012) Comparing field- and model-based standing dead tree carbon stock estimates across forests of the US. Forestry 85:125–133

    Article  Google Scholar 

  • Yates TT, Si BC, Farrell RE, Pennock DJ (2006) Probability distribution and spatial dependence of nitrous oxide emission: temporal change in hummocky terrain. Soil Science Society of America Journal 70:753–762

    Article  CAS  Google Scholar 

  • Zanne AE, Oberle B, Dunham KM, Milo AM, Walton ML, Young DF (2015) A deteriorating state of affairs: how endogenous and exogenous factors determine plant decay rates. Journal of Ecology 103:1421–1431

    Article  CAS  Google Scholar 

  • Zeikus JG, Ward JC (1974) Methane formation in living trees: a microbial origin. Science 184:1181–1183

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marcelo Ardón, Emily S. Bernhardt, Sunitha R. Pangala, and the Fall 2014 EcoLunch Discussion group at Wake Forest University for advice and helpful discussion, Katherine Juarez, Ashley Metcalf, Ted Primka, Parastou Ranjbar, and Sean Taylor for field assistance, and Scott Cory for assistance with statistical analyses. M.J. Carmichael was supported by an American Association of University Women American Fellowship, and by the Garden Club of America, The Wetland Foundation, and the Wake Forest University Department of Biology. M.J. Carmichael and J.C. White also received support from the Charles H. Babcock Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jane Carmichael.

Additional information

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmichael, M.J., Helton, A.M., White, J.C. et al. Standing Dead Trees are a Conduit for the Atmospheric Flux of CH4 and CO2 from Wetlands. Wetlands 38, 133–143 (2018). https://doi.org/10.1007/s13157-017-0963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0963-8

Keywords

Navigation