Afreen F, Zobayed SMA, Armstrong J, Armstrong W (2007) Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites Australis. Journal of Experimental Botany 58(7):1651–1662. https://doi.org/10.1093/jxb/erm017.
CAS
PubMed
Article
Google Scholar
Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716–723. https://doi.org/10.1109/TAC.1974.1100705.
Article
Google Scholar
Alberto MCR, Wassmann R, Buresh RJ et al (2014) Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research 160:12–21. https://doi.org/10.1016/j.fcr.2014.02.008.
Article
Google Scholar
Allan W, Struthers H, Lowe DC (2007) Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer. Global model results compared with Southern Hemisphere measurements. Journal of Geophysical Research 112:D04306. https://doi.org/10.1029/2006JD007369
Article
CAS
Google Scholar
Allen LH, Albrecht SL, Colón-Guasp W et al (2003) Methane emissions of Rice increased by elevated carbon dioxide and temperature. Journal of Environmental Quality 32(6):1978. https://doi.org/10.2134/jeq2003.1978
CAS
PubMed
Article
Google Scholar
Arkebauer TJ, Chanton JP, Verma SB, Kim J (2001) Field measurements of internal pressurization in Phragmites Australis (Poaceae) and implications for regulation of methane emissions in a mid-latitude prairie wetland. American Journal of Botany 88(2001):653–665
CAS
PubMed
Article
Google Scholar
Armstrong J, Armstrong W (1990) Pathways and mechanisms of oxygen transport in Phragmites australis. The use of constructed wetland in water pollution control. Pergamon, Oxford, pp 529–533
Book
Google Scholar
Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites Australis (Cav.) Trin. Ex Steud. Aquatic Botany 39(1–2):75–88. https://doi.org/10.1016/0304-3770(91)90023-X.
Article
Google Scholar
Bachelet D, Neue HU (1993) Methane emissions from wetland rice areas of Asia. Chemosphere 26(1–4):219–237. https://doi.org/10.1016/0045-6535(93)90423-3.
CAS
Article
Google Scholar
Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9(4):479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x.
Article
Google Scholar
Bastviken D, Cole J, Pace ML, van de Bogert MC (2008) Fates of methane from different lake habitats. Connecting whole-lake budget and CH4 emissions. Journal of Geophysical Research 113(G2):G02024. https://doi.org/10.1029/2007JG000608
Article
CAS
Google Scholar
Bhullar GS, Iravani M, Edwards PJ, Olde Venterink H (2013) Methane transport and emissions from soil as affected by water table and vascular plants. BMC Ecology 13:32. https://doi.org/10.1186/1472-6785-13-32.
PubMed
PubMed Central
Article
CAS
Google Scholar
Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science (New York, N.Y.) 327(5963):322–325. https://doi.org/10.1126/science.1175176.
CAS
Article
Google Scholar
Bloom AA, Bowman K, Lee M et al (2016) A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models. Geoscientific Model Development Discussion 10:1–37. https://doi.org/10.5194/gmd-2016-224
Article
Google Scholar
Borrel G, Jezequel D, Biderre-Petit C et al (2011) Production and consumption of methane in freshwater lake ecosystems. Research in microbiology 162(9):832–847. https://doi.org/10.1016/j.resmic.2011.06.004
CAS
PubMed
Article
Google Scholar
Bousquet P, Ciais P, Miller JB et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443(7110):439–443. https://doi.org/10.1038/nature05132.
CAS
PubMed
Article
Google Scholar
Bousquet P, Ringeval B, Pison I et al (2011) Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics 11(8):3689–3700. https://doi.org/10.5194/acp-11-3689-2011.
CAS
Article
Google Scholar
Brix H, Sorrell BK, Schierup HH (1996) Gas fluxes achieved by in situ convective flow in Phragmites Australis. Aquatic Botany 54(2–3):151–163. https://doi.org/10.1016/0304-3770(96)01042-X.
Article
Google Scholar
Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69(2–4):313–324. https://doi.org/10.1016/S0304-3770(01)00145-0.
CAS
Article
Google Scholar
Brown M, Humphreys E, Roulet NT, Moore TR, Lafleur P (2013) Divergent effects of drought on peatland methane emissions. In AGU fall meeting abstracts (Vol. 1, p. 01).
Burba G (2013) Eddy covariance method for scientific, industrial, agricultural, and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. Lincoln, LI-COR Biosciences
Google Scholar
Burnham KP (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33(2):261–304. https://doi.org/10.1177/0049124104268644.
Article
Google Scholar
Chanton JP (2005) The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry 36(5):753–768. https://doi.org/10.1016/j.orggeochem.2004.10.007.
CAS
Article
Google Scholar
Chanton JP, Arkebauer TJ, Harden HS, Verma SB (2002) Diel variation in lacunal CH4 and CO2 concentration and δ13C in Phragmites Australis. Biogeochemistry 59(3):287–301. https://doi.org/10.1023/A:1016067610783
CAS
Article
Google Scholar
Chen YH, Prinn RG (2006) Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. Journal of Geophysical Research. Atmospheres 111(D10):D10307. https://doi.org/10.1029/2005JD006058
Article
CAS
Google Scholar
Chen H, Wu N, Yao S et al (2009) High methane emissions from a littoral zone on the Qinghai-Tibetan plateau. Atmospheric Environment 43(32):4995–5000. https://doi.org/10.1016/j.atmosenv.2009.07.001.
CAS
Article
Google Scholar
Chen H, Zhu Q, Peng C et al (2013) Methane emissions from rice paddies natural wetlands, and lakes in China: synthesis and new estimate. Global Change Biology 19(1):19–32. https://doi.org/10.1111/gcb.12034.
PubMed
Article
Google Scholar
Chiang KY, Chen TY, Lee CH et al (2013) Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy. Journal of Environmental Sciences 25(3):626–636. https://doi.org/10.1016/S1001-0742(12)60084-9.
CAS
Article
Google Scholar
Clement RJ, Burba GG, Grelle A, Anderson DJ, Moncrieff JB (2009) Improved trace gas flux estimation through IRGA sampling optimization. Agricultural and Forest Meteorology 149(3–4):623–638. https://doi.org/10.1016/j.agrformet.2008.10.008.
Article
Google Scholar
Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60:609–640
CAS
PubMed
PubMed Central
Google Scholar
Conrad R (2009) The global methane cycle: recent advances in understanding the microbial process involved. Environmental Microbiology Reports 1(5):285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
CAS
PubMed
Article
Google Scholar
Conrad R, Schütz H, Babbel M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiology Letters 45(5):281–289. https://doi.org/10.1111/j.1574-6968.1987.tb02378.x
CAS
Article
Google Scholar
Cui M, Ma A, Qi H et al (2015) Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan plateau without changing methanogenic community composition. Scientific Reports 5:11616. https://doi.org/10.1038/srep11616.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cunnold DM (2002) In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. Journal of Geophysical Research 107(D14):ACH 20-1–ACH 20-18. https://doi.org/10.1029/2001JD001226
Article
Google Scholar
Curry CL (2007) Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles 21(4):GB4012. https://doi.org/10.1029/2006GB002818
Article
CAS
Google Scholar
Denman K et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) chap. 7Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, pp 501–587
Google Scholar
Ding W, Cai Z, Tsuruta H, Li X (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51(3):167–173. https://doi.org/10.1016/S0045-6535(02)00804-4.
CAS
PubMed
Article
Google Scholar
Dinsmore KJ, Skiba UM, Billett MF, Rees RM, Drewer J (2009) Spatial and temporal variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland: implications for modelling and up-scaling. Soil Biology and Biochemistry 41(6):1315–1323. https://doi.org/10.1016/j.soilbio.2009.03.022.
CAS
Article
Google Scholar
Dlugokencky EJ (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophysical Research Letters 30(19):1992. https://doi.org/10.1029/2003GL018126
Article
CAS
Google Scholar
Dlugokencky EJ, Bruhwiler L, White JWC et al (2009) Observational constraints on recent increases in the atmospheric CH 4 burden. Geophysical Research Letters 36(18):L18803. https://doi.org/10.1029/2009GL039780
Article
CAS
Google Scholar
Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 369(1943):2058–2072. https://doi.org/10.1098/rsta.2010.0341
CAS
Article
Google Scholar
Dominici F (2002) On the use of generalized additive models in time-series studies of air pollution and health. American Journal of Epidemiology 156(3):193–203. https://doi.org/10.1093/aje/kwf062.
PubMed
Article
Google Scholar
Duc NT, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100(1–3):185–196. https://doi.org/10.1007/s10533-010-9415-8.
CAS
Article
Google Scholar
Dunfield P, Knowles R, Dumont R, Moore T (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology and Biochemistry 25(3):321–326. https://doi.org/10.1016/0038-0717(93)90130-4.
CAS
Article
Google Scholar
Ehhalt DH (1974) The atmospheric cycle of methane. Tellus 26(1–2):58–70. https://doi.org/10.1111/j.2153-3490.1974.tb01952.x.
CAS
Google Scholar
Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research. Atmospheres 103(D13):15979–15993. https://doi.org/10.1029/98JD00923
CAS
Article
Google Scholar
Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33(1):317–345. https://doi.org/10.1146/annurev.pp.33.060182.001533.
CAS
Article
Google Scholar
Ferry JG (1993) Methanogenesis: ecology, physiology. Biochemistry & Genetics, Boston
Book
Google Scholar
Foken T, Göockede M, Mauder M et al (2004) Post-field data quality control. In: Handbook of micrometeorology. Springer, Netherlands, pp 181–208
Google Scholar
Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) chap. 2In Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 131–234
Google Scholar
Gålfalk M, Olofsson G, Crill P, Bastviken D (2015) Making methane visible. Nature Climate Change 6(4):426–430. https://doi.org/10.1038/nclimate2877.
Article
CAS
Google Scholar
Garcia JL, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6(4):205–226. https://doi.org/10.1006/anae.2000.0345.
CAS
PubMed
Article
Google Scholar
Garnet KN, Megonigal JP, Litchfield C, Taylor GE (2005) Physiological control of leaf methane emission from wetland plants. Aquatic Botany 81(2):141–155. https://doi.org/10.1016/j.aquabot.2004.10.003.
CAS
Article
Google Scholar
Goodrich JP, Campbell DI, Roulet NT, Clearwater MJ, Schipper LA (2015) Overriding control of methane flux temporal variability by water table dynamics in a southern hemisphere, raised bog. Journal of Geophysical Research. Biogeosciences 120(5):819–831. https://doi.org/10.1002/2014JG002844.
CAS
Article
Google Scholar
IPCC (2013) Climate change 2013: the physical science basis. In: Stocker et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p 1535
Jarvis PG, KG MN (1986) Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research 15(1986):1–49. https://doi.org/10.1016/S0065-2504(08)60119-1
Google Scholar
Jha CS, Rodda SR, Thumaty KC, Raha AK, Dadhwal VK (2014) Eddy covariance based methane flux in Sundarbans mangroves, India. Journal of Earth System Science 123(5):1089–1096. https://doi.org/10.1007/s12040-014-0451-y.
CAS
Article
Google Scholar
Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7(8):919–932. https://doi.org/10.1046/j.1354-1013.2001.00044.x.
Article
Google Scholar
Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution 14(10):385–388. https://doi.org/10.1016/S0169-5347(99)01649-3.
CAS
Article
Google Scholar
Johansson T, Malmer N, Crill PM et al (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biology 12(12):2352–2369. https://doi.org/10.1111/j.1365-2486.2006.01267.x.
Article
Google Scholar
Käki T, Ojala A, Kankaala P (2001) Diel variation in methane emissions from stands of Phragmites Australis (Cav.) Trin. Ex Steud. And Typha Latifolia L. in a boreal lake. Aquatic Botany 71(4):259–271. https://doi.org/10.1016/S0304-3770(01)00186-3.
Article
Google Scholar
Khalil MAK, Shearer MJ, Rasmussen RA, Duan C, Ren L (2008) Production, oxidation, and emissions of methane from rice fields in China. Journal of Geophysical Research 113:G00A04. https://doi.org/10.1029/2007JG000461
Google Scholar
Kim J, Verma SB, Billesbach DP, Clement RJ (1998) Diel variation in methane emission from a midlatitude prairie wetland: significance of convective throughflow in Phragmites Australis. Journal of Geophysical Research. Atmospheres 103(D21):28029–28039. https://doi.org/10.1029/98JD02441
CAS
Article
Google Scholar
Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart GJ, Smolders AJP et al. (2010): Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience 3 (9), S. 617–621. doi:https://doi.org/10.1038/ngeo939.
Kirschbaum MU (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27(6):753–760. https://doi.org/10.1016/0038-0717(94)00242-S.
CAS
Article
Google Scholar
Kirschbaum MU (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry 38(9):2510–2518. https://doi.org/10.1016/j.soilbio.2006.01.030.
CAS
Article
Google Scholar
Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nature Geoscience 6(10):813–823. https://doi.org/10.1038/ngeo1955.
CAS
Article
Google Scholar
Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorology 112(3):503–523. https://doi.org/10.1023/B:BOUN.0000030653.71031.96.
Article
Google Scholar
Knox SH, Matthes JH, Sturtevant C et al (2016) Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research. Biogeosciences 121(3):978–1001. https://doi.org/10.1002/2015JG003247.
CAS
Article
Google Scholar
Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S (2015) Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology 204:94–105. https://doi.org/10.1016/j.agrformet.2015.02.002.
Article
Google Scholar
Koelbener A, Ström L, Edwards PJ, Olde Venterink H (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil 326(1–2):147–158. https://doi.org/10.1007/s11104-009-9989-x.
CAS
Article
Google Scholar
Konnerup D, Sorrell BK, Brix H (2011) Do tropical wetland plants possess convective gas flow mechanisms? The New Phytologist 190(2):379–386. https://doi.org/10.1111/j.1469-8137.2010.03585.x.
PubMed
Article
Google Scholar
Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany 105(1):141–153. https://doi.org/10.1093/aob/mcp201.
CAS
PubMed
Article
Google Scholar
Lai DVF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421. https://doi.org/10.1016/S1002-0160(09)00003-4.
CAS
Article
Google Scholar
Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37(1):25–50. https://doi.org/10.1016/S1164-5563(01)01067-6.
Article
Google Scholar
Lee HY, Shih SS (2004) Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering 23(2):85–94. https://doi.org/10.1016/j.ecoleng.2004.07.003.
Article
Google Scholar
Lee SC, Fan CJ, ZY W, Juang JY (2015) Investigating effect of environmental controls on dynamics of CO 2 budget in a subtropical estuarial marsh wetland ecosystem. Environmental Research Letters 10(2):25005. https://doi.org/10.1088/1748-9326/10/2/025005.
Article
CAS
Google Scholar
Lloyd D, Thomas KL, Benstead J et al (1998) Methanogenesis and CO2 exchange in an ombrotrophic peat bog. Atmospheric Environment 32(19):3229–3238. https://doi.org/10.1016/S1352-2310(97)00481-0.
CAS
Article
Google Scholar
Lupascu M, Wadham JL, Hornibrook ERC, Pancost RD (2012) Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost northern wetlands. Arctic, Antarctic, and Alpine Research 44(4):469–482. https://doi.org/10.1657/1938-4246-44.4.469.
Article
Google Scholar
Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 15(6):597–609. https://doi.org/10.1127/0941-2948/2006/0167.
Article
Google Scholar
Meijide A, Manca G, Goded I et al (2011) Seasonal trends and environmental controls of methane emissions in a rice paddy field in northern Italy. Biogeosciences 8(12):3809–3821. https://doi.org/10.5194/bg-8-3809-2011.
CAS
Article
Google Scholar
Meijide A, Gruening C, Goded I, Seufert G, Cescatti A (2017) Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems and Environment 238:168–178. https://doi.org/10.1016/j.agee.2016.08.017.
CAS
Article
Google Scholar
Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R. et al. (2013) Present state of global wetland extent and wetland methane modelling. Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10 (2), S. 753–788. doi:https://doi.org/10.5194/bg-10-753-2013
Milberg P, Törnqvist L, Westerberg L, Bastviken D (2017) Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes. AoB PLANTS. https://doi.org/10.1093/aobpla/plx029
Minami K, Neue H-U (1994) Rice paddies as a methane source. Climatic Change 27(1):13–26. https://doi.org/10.1007/BF01098470.
CAS
Article
Google Scholar
Moore TR, Knowles R (1990) Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11(1):45–61. https://doi.org/10.1007/BF00000851.
Article
Google Scholar
Moore TR, Young A d, Bubier JL et al (2011) A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14(4):646–657. https://doi.org/10.1007/s10021-011-9435-9
CAS
Article
Google Scholar
Morrissey LA, Livingston GP (1992) Methane emissions from Alaska Arctic tundra: an assessment of local spatial variability. Journal of Geophysical Research 97(D15):16661. https://doi.org/10.1029/92JD00063
CAS
Article
Google Scholar
Morrissey LA, Zobel DB, Livingston GP (1993) Significance of stomatal control on methane release from -dominated wetlands. Chemosphere 26(1–4):339–355. https://doi.org/10.1016/0045-6535(93)90430-D
CAS
Article
Google Scholar
Musenze RS, Fan L, Grinham A, Werner U, Gale D, Udy J, Yuan Z (2016) Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities. Biogeochemistry 128(1–2):233–255. https://doi.org/10.1007/s10533-016-0206-8.
CAS
Article
Google Scholar
Myhre G, Shindell D, Bréon FM, Collins W et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New York, pp 659–740
Google Scholar
Olson DM, Griffis TJ, Noormets A, Kolka R, Chen J (2013) Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. Journal of Geophysical Research. Biogeosciences 118(1):226–238. https://doi.org/10.1002/jgrg.20031.
CAS
Article
Google Scholar
Pelletier L, Moore TR, Roulet NT, Garneau M, Beaulieu-Audy V (2007) Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. Journal of Geophysical Research 112(G1):G01018. https://doi.org/10.1029/2006JG000216
Article
CAS
Google Scholar
Pirk N, Mastepanov M, López-Blanco E, Christensen L, Christiansen H, Hansen BU et al (2017) Towards a statistical description of methane emissions from arctic wetlands. Ambio 46(1):70–80. https://doi.org/10.1007/s13280-016-0893-3.
CAS
PubMed
PubMed Central
Article
Google Scholar
R Development Core Team (2016) R: A language and environment for statistical computing http://www.R-project.org.
Repo ME, Huttunen JT, Naumov AV et al (2007) Release of CO 2 and CH 4 from small wetland lakes in western Siberia. Tellus B 59(5):788–779. https://doi.org/10.1111/j.1600-0889.2007.00301.x.
Article
CAS
Google Scholar
Rigby M, Prinn RG, Fraser PJ et al (2008) Renewed growth of atmospheric methane. Geophysical Research Letters 35(22). https://doi.org/10.1029/2008GL036037.
Saarnio S, Winiwarter W, Leitão J (2009) Methane release from wetlands and watercourses in Europe. Atmospheric Environment 43(7):1421–1429. https://doi.org/10.1016/j.atmosenv.2008.04.007.
CAS
Article
Google Scholar
Sapart CJ, Monteil G, Prokopiou M et al (2012) Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490(7418):85–88. https://doi.org/10.1038/nature11461.
CAS
PubMed
Article
Google Scholar
Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. Journal of Geophysical Research 94(D13):16405. https://doi.org/10.1029/JD094iD13p16405
Article
Google Scholar
Segarra KEA, Samarkin V, King E, Meile C, Joye SB (2013) Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry 115(1–3):349–361. https://doi.org/10.1007/s10533-013-9840-6.
CAS
Article
Google Scholar
Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51. https://doi.org/10.1023/A:1005929032764.
CAS
Article
Google Scholar
Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. The Journal of Ecology 84(2):239. https://doi.org/10.2307/2261359.
CAS
Article
Google Scholar
Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters 31(21):L21202. https://doi.org/10.1029/2004GL021009
Article
CAS
Google Scholar
Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ (2011) Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470(7332):82–85. https://doi.org/10.1038/nature09739.
CAS
PubMed
Article
Google Scholar
Singh S, Kulshreshtha K, Agnihotri S (2000) Seasonal dynamics of methane emission from wetlands. Chemosphere - Global Change Science 2(1):39–46. https://doi.org/10.1016/S1465-9972(99)00046-X.
CAS
Article
Google Scholar
Sjogersten S, Black CR, Evers S et al (2014) Tropical wetlands: a missing link in the global carbon cycle? Global Biogeochemical Cycles 28(12):1371–1386. https://doi.org/10.1002/2014GB004844.
PubMed
PubMed Central
Article
CAS
Google Scholar
Sjögersten S, Caul S, Daniell TJ et al (2016) Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biology and Biochemistry 98:42–53. https://doi.org/10.1016/j.soilbio.2016.03.016.
Article
CAS
Google Scholar
Sorrell BK, Hawes I (2010) Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes. Annals of Botany 105(1):165–174. https://doi.org/10.1093/aob/mcp138.
PubMed
Article
Google Scholar
Sun L, Song C, Miao Y, Qiao T, Gong C (2013) Temporal and spatial variability of methane emissions in a northern temperate marsh. Atmospheric Environment 81:356–363. https://doi.org/10.1016/j.atmosenv.2013.09.033.
CAS
Article
Google Scholar
Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23(2):GB2023. https://doi.org/10.1029/2008GB003327
Article
CAS
Google Scholar
Tseng K-H, Tsai J-L, Alagesan A et al (2010) Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agricultural and Forest Meteorology 150(6):852–859. https://doi.org/10.1016/j.agrformet.2010.04.007.
Article
Google Scholar
Tyagi L, Kumari B, Singh SN (2010) Water management—a tool for methane mitigation from irrigated paddy fields. The Science of the total environment 408(5):1085–1090. https://doi.org/10.1016/j.scitotenv.2009.09.010.
CAS
PubMed
Article
Google Scholar
van den Berg M, Ingwersen J, Lamers M, Streck T (2016) The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in southwest Germany. Biogeosciences 13(21):6107–6119. https://doi.org/10.5194/bg-13-6107-2016.
Article
Google Scholar
van der Nat FFW, Middelburg JJ, van Meteren D, Wielemakers A (1998) Diel methane emission patterns from Scirpus Lacustris and Phragmites Australis. Biogeochemistry 41(1):1–22. https://doi.org/10.1023/A:1005933100905
Article
Google Scholar
Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS3 (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107): 71–75. doi:https://doi.org/10.1038/nature05040.
Wang H, Liao G, D’Souza M et al (2016) Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environmental Science and Pollution Research International 23(2):1873–1885. https://doi.org/10.1007/s11356-015-5440-4.
CAS
PubMed
Article
Google Scholar
Wang C, Lai DYF, Sardans J, Wang W, Zeng C, Peñuelas J (2017) Factors related with CH4 and N2O emissions from a Paddy field: clues for management implications. PloS One 12(1):e0169254. https://doi.org/10.1371/journal.pone.0169254.
PubMed
PubMed Central
Article
Google Scholar
Wassmann R, Neue H-U, Lantin RS, Buendia LV, Rennenberg H (2000) Characterization of methane Emissions from Rice fields in Asia. I. Comparison among field sites in five countries. Nutrient Cycling in Agroecosystems 58(1/3):1–12. https://doi.org/10.1007/978-94-010-0898-3_2.
CAS
Article
Google Scholar
Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106(447):85–100. https://doi.org/10.1002/qj.49710644707.
Article
Google Scholar
Weller S, Kraus D, Butterbach-Bahl K et al (2015) Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science 178(5):755–767. https://doi.org/10.1002/jpln.201500092.
CAS
Article
Google Scholar
Weller S, Janz B, Jorg L et al (2016) Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology 22(1):432–448. https://doi.org/10.1111/gcb.13099.
PubMed
Article
Google Scholar
Welti N, Hayes M, Lockington D (2017) Seasonal nitrous oxide and methane emissions across a subtropical estuarine salinity gradient. Biogeochemistry 132(1–2):55–69. https://doi.org/10.1007/s10533-016-0287-4.
CAS
Article
Google Scholar
Westermann P (1993) Temperature regulation of methanogenesis in wetlands. Chemosphere 26(1–4):321–328. https://doi.org/10.1016/0045-6535(93)90428-8.
CAS
Article
Google Scholar
Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22(1):73–94. https://doi.org/10.1089/ees.2005.22.73.
CAS
Article
Google Scholar
Whalen SC, Reeburgh WS (1990) Consumption of atmospheric methane by tundra soils. Nature 346(6280):160–162. https://doi.org/10.1038/346160a0.
CAS
Article
Google Scholar
Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364(6440):794–795. https://doi.org/10.1038/364794a0.
CAS
Article
Google Scholar
Wik M, Crill PM, Varner RK, Bastviken D (2013) Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research. Biogeosciences 118(3):1307–1321. https://doi.org/10.1002/jgrg.20103.
Article
Google Scholar
Wille C, Kutzbach L, Sachs T, Wagner D, Pfeiffer EM (2008) Methane emission from Siberian arctic polygonal tundra: Eddy covariance measurements and modeling. Global Change Biology 14(6):1395–1408. https://doi.org/10.1111/j.1365-2486.2008.01586.x.
Article
Google Scholar
Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton
Google Scholar
Yang WB, Yuan CS, Tong C, Yang P, Yang L, Huang BQ (2017) Diurnal variation of CO2, CH4, and N2O emission fluxes continously monitored in-situ in three environmental habitats in a subtropical estuarine wetland. Marine Pollution Bulletin 119(1):289–298. https://doi.org/10.1016/j.marpolbul.2017.04.005.
CAS
PubMed
Article
Google Scholar
Zeikus JG, Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. Applied and Environmental Microbiology 31.1(1976):99–107
Google Scholar
Zhang B, TIAN H, Lu C, Chen G, Pan S, Anderson C, Poulter B (2017) Methane emissions from global wetlands. An assessment of the uncertainty associated with various wetland extent data sets. Atmospheric Environment 165:310–321. https://doi.org/10.1016/j.atmosenv.2017.07.001.
CAS
Article
Google Scholar