, Volume 37, Issue 6, pp 1145–1157 | Cite as

Methane Emissions from a Subtropical Grass Marshland, Northern Taiwan

  • Katharina PhilippEmail author
  • Jehn-Yih Juang
  • Malte Julian Deventer
  • Otto Klemm
Original Research


Methane (CH4) is an important greenhouse gas and a significant contributor to global warming. Compared to preindustrial levels, the atmospheric CH4 concentration has more than doubled. The most dominant non-anthropogenic sources of atmospheric CH4 have been found to be natural wetlands, but CH4 fluxes from many wetlands all over the world are largely unexplored. We present the first results of eddy covariance CH4 flux measurements above a subtropical grass marshland in northern Taiwan. Our results show that this wetland, dominated by Phragmites australis and Brachiaria mutica, is a significant source of CH4. During the six-week measuring period in August and September, daily mean emissions of 145 mg CH4 m−2 were recorded. Clear diurnal variations of the CH4 fluxes were observed, peaking at 0.187 μmol m−2 s−1 in the early afternoon. Minimal emissions generally occurred between 03:30 and 06:30 h, before sunrise. Significant correlations of the CH4 flux with the latent heat flux, stomatal conductance, and relative humidity indicated that the diurnal patterns were induced by convective gas flow through the aerenchyma of the plants. Moreover, the magnitude of the CH4 emissions predominantly responded to water level fluctuations; water levels below the soil surface were associated with significantly lower CH4 emissions.


Methane fluxes Subtropical wetland Eddy covariance Greenhouse gases Diurnal pattern Plant-mediated transport 



We would like to thank Chao-Jung Fan and Ziyi Lu (National Taiwan University) for support during the setup of the eddy covariance tower and technical assistance both during and after our measuring period. We thank C. Brennecka for language-editing of the final version of the manuscript.


  1. Afreen F, Zobayed SMA, Armstrong J, Armstrong W (2007) Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites Australis. Journal of Experimental Botany 58(7):1651–1662. PubMedCrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716–723. CrossRefGoogle Scholar
  3. Alberto MCR, Wassmann R, Buresh RJ et al (2014) Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research 160:12–21. CrossRefGoogle Scholar
  4. Allan W, Struthers H, Lowe DC (2007) Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer. Global model results compared with Southern Hemisphere measurements. Journal of Geophysical Research 112:D04306. CrossRefGoogle Scholar
  5. Allen LH, Albrecht SL, Colón-Guasp W et al (2003) Methane emissions of Rice increased by elevated carbon dioxide and temperature. Journal of Environmental Quality 32(6):1978. PubMedCrossRefGoogle Scholar
  6. Arkebauer TJ, Chanton JP, Verma SB, Kim J (2001) Field measurements of internal pressurization in Phragmites Australis (Poaceae) and implications for regulation of methane emissions in a mid-latitude prairie wetland. American Journal of Botany 88(2001):653–665PubMedCrossRefGoogle Scholar
  7. Armstrong J, Armstrong W (1990) Pathways and mechanisms of oxygen transport in Phragmites australis. The use of constructed wetland in water pollution control. Pergamon, Oxford, pp 529–533CrossRefGoogle Scholar
  8. Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites Australis (Cav.) Trin. Ex Steud. Aquatic Botany 39(1–2):75–88. CrossRefGoogle Scholar
  9. Bachelet D, Neue HU (1993) Methane emissions from wetland rice areas of Asia. Chemosphere 26(1–4):219–237. CrossRefGoogle Scholar
  10. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology 9(4):479–492. CrossRefGoogle Scholar
  11. Bastviken D, Cole J, Pace ML, van de Bogert MC (2008) Fates of methane from different lake habitats. Connecting whole-lake budget and CH4 emissions. Journal of Geophysical Research 113(G2):G02024. CrossRefGoogle Scholar
  12. Bhullar GS, Iravani M, Edwards PJ, Olde Venterink H (2013) Methane transport and emissions from soil as affected by water table and vascular plants. BMC Ecology 13:32. PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science (New York, N.Y.) 327(5963):322–325. CrossRefGoogle Scholar
  14. Bloom AA, Bowman K, Lee M et al (2016) A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models. Geoscientific Model Development Discussion 10:1–37. CrossRefGoogle Scholar
  15. Borrel G, Jezequel D, Biderre-Petit C et al (2011) Production and consumption of methane in freshwater lake ecosystems. Research in microbiology 162(9):832–847. PubMedCrossRefGoogle Scholar
  16. Bousquet P, Ciais P, Miller JB et al (2006) Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443(7110):439–443. PubMedCrossRefGoogle Scholar
  17. Bousquet P, Ringeval B, Pison I et al (2011) Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics 11(8):3689–3700. CrossRefGoogle Scholar
  18. Brix H, Sorrell BK, Schierup HH (1996) Gas fluxes achieved by in situ convective flow in Phragmites Australis. Aquatic Botany 54(2–3):151–163. CrossRefGoogle Scholar
  19. Brix H, Sorrell BK, Lorenzen B (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69(2–4):313–324. CrossRefGoogle Scholar
  20. Brown M, Humphreys E, Roulet NT, Moore TR, Lafleur P (2013) Divergent effects of drought on peatland methane emissions. In AGU fall meeting abstracts (Vol. 1, p. 01).Google Scholar
  21. Burba G (2013) Eddy covariance method for scientific, industrial, agricultural, and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. Lincoln, LI-COR BiosciencesGoogle Scholar
  22. Burnham KP (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research 33(2):261–304. CrossRefGoogle Scholar
  23. Chanton JP (2005) The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochemistry 36(5):753–768. CrossRefGoogle Scholar
  24. Chanton JP, Arkebauer TJ, Harden HS, Verma SB (2002) Diel variation in lacunal CH4 and CO2 concentration and δ13C in Phragmites Australis. Biogeochemistry 59(3):287–301. CrossRefGoogle Scholar
  25. Chen YH, Prinn RG (2006) Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. Journal of Geophysical Research. Atmospheres 111(D10):D10307. CrossRefGoogle Scholar
  26. Chen H, Wu N, Yao S et al (2009) High methane emissions from a littoral zone on the Qinghai-Tibetan plateau. Atmospheric Environment 43(32):4995–5000. CrossRefGoogle Scholar
  27. Chen H, Zhu Q, Peng C et al (2013) Methane emissions from rice paddies natural wetlands, and lakes in China: synthesis and new estimate. Global Change Biology 19(1):19–32. PubMedCrossRefGoogle Scholar
  28. Chiang KY, Chen TY, Lee CH et al (2013) Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy. Journal of Environmental Sciences 25(3):626–636. CrossRefGoogle Scholar
  29. Clement RJ, Burba GG, Grelle A, Anderson DJ, Moncrieff JB (2009) Improved trace gas flux estimation through IRGA sampling optimization. Agricultural and Forest Meteorology 149(3–4):623–638. CrossRefGoogle Scholar
  30. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60:609–640PubMedPubMedCentralGoogle Scholar
  31. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial process involved. Environmental Microbiology Reports 1(5):285–292. PubMedCrossRefGoogle Scholar
  32. Conrad R, Schütz H, Babbel M (1987) Temperature limitation of hydrogen turnover and methanogenesis in anoxic paddy soil. FEMS Microbiology Letters 45(5):281–289. CrossRefGoogle Scholar
  33. Cui M, Ma A, Qi H et al (2015) Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan plateau without changing methanogenic community composition. Scientific Reports 5:11616. PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cunnold DM (2002) In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences. Journal of Geophysical Research 107(D14):ACH 20-1–ACH 20-18. CrossRefGoogle Scholar
  35. Curry CL (2007) Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles 21(4):GB4012. CrossRefGoogle Scholar
  36. Denman K et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) chap. 7Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, pp 501–587Google Scholar
  37. Ding W, Cai Z, Tsuruta H, Li X (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51(3):167–173. PubMedCrossRefGoogle Scholar
  38. Dinsmore KJ, Skiba UM, Billett MF, Rees RM, Drewer J (2009) Spatial and temporal variability in CH4 and N2O fluxes from a Scottish ombrotrophic peatland: implications for modelling and up-scaling. Soil Biology and Biochemistry 41(6):1315–1323. CrossRefGoogle Scholar
  39. Dlugokencky EJ (2003) Atmospheric methane levels off: temporary pause or a new steady-state? Geophysical Research Letters 30(19):1992. CrossRefGoogle Scholar
  40. Dlugokencky EJ, Bruhwiler L, White JWC et al (2009) Observational constraints on recent increases in the atmospheric CH 4 burden. Geophysical Research Letters 36(18):L18803. CrossRefGoogle Scholar
  41. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 369(1943):2058–2072. CrossRefGoogle Scholar
  42. Dominici F (2002) On the use of generalized additive models in time-series studies of air pollution and health. American Journal of Epidemiology 156(3):193–203. PubMedCrossRefGoogle Scholar
  43. Duc NT, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100(1–3):185–196. CrossRefGoogle Scholar
  44. Dunfield P, Knowles R, Dumont R, Moore T (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biology and Biochemistry 25(3):321–326. CrossRefGoogle Scholar
  45. Ehhalt DH (1974) The atmospheric cycle of methane. Tellus 26(1–2):58–70. Google Scholar
  46. Etheridge DM, Steele LP, Francey RJ, Langenfelds RL (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research. Atmospheres 103(D13):15979–15993. CrossRefGoogle Scholar
  47. Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33(1):317–345. CrossRefGoogle Scholar
  48. Ferry JG (1993) Methanogenesis: ecology, physiology. Biochemistry & Genetics, BostonCrossRefGoogle Scholar
  49. Foken T, Göockede M, Mauder M et al (2004) Post-field data quality control. In: Handbook of micrometeorology. Springer, Netherlands, pp 181–208Google Scholar
  50. Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) chap. 2In Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 131–234Google Scholar
  51. Gålfalk M, Olofsson G, Crill P, Bastviken D (2015) Making methane visible. Nature Climate Change 6(4):426–430. CrossRefGoogle Scholar
  52. Garcia JL, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6(4):205–226. PubMedCrossRefGoogle Scholar
  53. Garnet KN, Megonigal JP, Litchfield C, Taylor GE (2005) Physiological control of leaf methane emission from wetland plants. Aquatic Botany 81(2):141–155. CrossRefGoogle Scholar
  54. Goodrich JP, Campbell DI, Roulet NT, Clearwater MJ, Schipper LA (2015) Overriding control of methane flux temporal variability by water table dynamics in a southern hemisphere, raised bog. Journal of Geophysical Research. Biogeosciences 120(5):819–831. CrossRefGoogle Scholar
  55. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker et al (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, p 1535Google Scholar
  56. Jarvis PG, KG MN (1986) Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research 15(1986):1–49. Google Scholar
  57. Jha CS, Rodda SR, Thumaty KC, Raha AK, Dadhwal VK (2014) Eddy covariance based methane flux in Sundarbans mangroves, India. Journal of Earth System Science 123(5):1089–1096. CrossRefGoogle Scholar
  58. Joabsson A, Christensen TR (2001) Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology 7(8):919–932. CrossRefGoogle Scholar
  59. Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution 14(10):385–388. CrossRefGoogle Scholar
  60. Johansson T, Malmer N, Crill PM et al (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biology 12(12):2352–2369. CrossRefGoogle Scholar
  61. Käki T, Ojala A, Kankaala P (2001) Diel variation in methane emissions from stands of Phragmites Australis (Cav.) Trin. Ex Steud. And Typha Latifolia L. in a boreal lake. Aquatic Botany 71(4):259–271. CrossRefGoogle Scholar
  62. Khalil MAK, Shearer MJ, Rasmussen RA, Duan C, Ren L (2008) Production, oxidation, and emissions of methane from rice fields in China. Journal of Geophysical Research 113:G00A04. Google Scholar
  63. Kim J, Verma SB, Billesbach DP, Clement RJ (1998) Diel variation in methane emission from a midlatitude prairie wetland: significance of convective throughflow in Phragmites Australis. Journal of Geophysical Research. Atmospheres 103(D21):28029–28039. CrossRefGoogle Scholar
  64. Kip N, van Winden JF, Pan Y, Bodrossy L, Reichart GJ, Smolders AJP et al. (2010): Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience 3 (9), S. 617–621. doi:
  65. Kirschbaum MU (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27(6):753–760. CrossRefGoogle Scholar
  66. Kirschbaum MU (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biology and Biochemistry 38(9):2510–2518. CrossRefGoogle Scholar
  67. Kirschke S, Bousquet P, Ciais P et al (2013) Three decades of global methane sources and sinks. Nature Geoscience 6(10):813–823. CrossRefGoogle Scholar
  68. Kljun N, Calanca P, Rotach MW, Schmid HP (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorology 112(3):503–523. CrossRefGoogle Scholar
  69. Knox SH, Matthes JH, Sturtevant C et al (2016) Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research. Biogeosciences 121(3):978–1001. CrossRefGoogle Scholar
  70. Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S (2015) Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology 204:94–105. CrossRefGoogle Scholar
  71. Koelbener A, Ström L, Edwards PJ, Olde Venterink H (2010) Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil 326(1–2):147–158. CrossRefGoogle Scholar
  72. Konnerup D, Sorrell BK, Brix H (2011) Do tropical wetland plants possess convective gas flow mechanisms? The New Phytologist 190(2):379–386. PubMedCrossRefGoogle Scholar
  73. Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany 105(1):141–153. PubMedCrossRefGoogle Scholar
  74. Lai DVF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19(4):409–421. CrossRefGoogle Scholar
  75. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 37(1):25–50. CrossRefGoogle Scholar
  76. Lee HY, Shih SS (2004) Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering 23(2):85–94. CrossRefGoogle Scholar
  77. Lee SC, Fan CJ, ZY W, Juang JY (2015) Investigating effect of environmental controls on dynamics of CO 2 budget in a subtropical estuarial marsh wetland ecosystem. Environmental Research Letters 10(2):25005. CrossRefGoogle Scholar
  78. Lloyd D, Thomas KL, Benstead J et al (1998) Methanogenesis and CO2 exchange in an ombrotrophic peat bog. Atmospheric Environment 32(19):3229–3238. CrossRefGoogle Scholar
  79. Lupascu M, Wadham JL, Hornibrook ERC, Pancost RD (2012) Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost northern wetlands. Arctic, Antarctic, and Alpine Research 44(4):469–482. CrossRefGoogle Scholar
  80. Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 15(6):597–609. CrossRefGoogle Scholar
  81. Meijide A, Manca G, Goded I et al (2011) Seasonal trends and environmental controls of methane emissions in a rice paddy field in northern Italy. Biogeosciences 8(12):3809–3821. CrossRefGoogle Scholar
  82. Meijide A, Gruening C, Goded I, Seufert G, Cescatti A (2017) Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems and Environment 238:168–178. CrossRefGoogle Scholar
  83. Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R. et al. (2013) Present state of global wetland extent and wetland methane modelling. Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10 (2), S. 753–788. doi:
  84. Milberg P, Törnqvist L, Westerberg L, Bastviken D (2017) Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes. AoB PLANTS.
  85. Minami K, Neue H-U (1994) Rice paddies as a methane source. Climatic Change 27(1):13–26. CrossRefGoogle Scholar
  86. Moore TR, Knowles R (1990) Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11(1):45–61. CrossRefGoogle Scholar
  87. Moore TR, Young A d, Bubier JL et al (2011) A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14(4):646–657. CrossRefGoogle Scholar
  88. Morrissey LA, Livingston GP (1992) Methane emissions from Alaska Arctic tundra: an assessment of local spatial variability. Journal of Geophysical Research 97(D15):16661. CrossRefGoogle Scholar
  89. Morrissey LA, Zobel DB, Livingston GP (1993) Significance of stomatal control on methane release from -dominated wetlands. Chemosphere 26(1–4):339–355. CrossRefGoogle Scholar
  90. Musenze RS, Fan L, Grinham A, Werner U, Gale D, Udy J, Yuan Z (2016) Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities. Biogeochemistry 128(1–2):233–255. CrossRefGoogle Scholar
  91. Myhre G, Shindell D, Bréon FM, Collins W et al (2013) Anthropogenic and natural radiative forcing. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, and New York, pp 659–740Google Scholar
  92. Olson DM, Griffis TJ, Noormets A, Kolka R, Chen J (2013) Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. Journal of Geophysical Research. Biogeosciences 118(1):226–238. CrossRefGoogle Scholar
  93. Pelletier L, Moore TR, Roulet NT, Garneau M, Beaulieu-Audy V (2007) Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. Journal of Geophysical Research 112(G1):G01018. CrossRefGoogle Scholar
  94. Pirk N, Mastepanov M, López-Blanco E, Christensen L, Christiansen H, Hansen BU et al (2017) Towards a statistical description of methane emissions from arctic wetlands. Ambio 46(1):70–80. PubMedPubMedCentralCrossRefGoogle Scholar
  95. R Development Core Team (2016) R: A language and environment for statistical computing
  96. Repo ME, Huttunen JT, Naumov AV et al (2007) Release of CO 2 and CH 4 from small wetland lakes in western Siberia. Tellus B 59(5):788–779. CrossRefGoogle Scholar
  97. Rigby M, Prinn RG, Fraser PJ et al (2008) Renewed growth of atmospheric methane. Geophysical Research Letters 35(22).
  98. Saarnio S, Winiwarter W, Leitão J (2009) Methane release from wetlands and watercourses in Europe. Atmospheric Environment 43(7):1421–1429. CrossRefGoogle Scholar
  99. Sapart CJ, Monteil G, Prokopiou M et al (2012) Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490(7418):85–88. PubMedCrossRefGoogle Scholar
  100. Schütz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. Journal of Geophysical Research 94(D13):16405. CrossRefGoogle Scholar
  101. Segarra KEA, Samarkin V, King E, Meile C, Joye SB (2013) Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry 115(1–3):349–361. CrossRefGoogle Scholar
  102. Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51. CrossRefGoogle Scholar
  103. Shannon RD, White JR, Lawson JE, Gilmour BS (1996) Methane efflux from emergent vegetation in peatlands. The Journal of Ecology 84(2):239. CrossRefGoogle Scholar
  104. Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters 31(21):L21202. CrossRefGoogle Scholar
  105. Singarayer JS, Valdes PJ, Friedlingstein P, Nelson S, Beerling DJ (2011) Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470(7332):82–85. PubMedCrossRefGoogle Scholar
  106. Singh S, Kulshreshtha K, Agnihotri S (2000) Seasonal dynamics of methane emission from wetlands. Chemosphere - Global Change Science 2(1):39–46. CrossRefGoogle Scholar
  107. Sjogersten S, Black CR, Evers S et al (2014) Tropical wetlands: a missing link in the global carbon cycle? Global Biogeochemical Cycles 28(12):1371–1386. PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sjögersten S, Caul S, Daniell TJ et al (2016) Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biology and Biochemistry 98:42–53. CrossRefGoogle Scholar
  109. Sorrell BK, Hawes I (2010) Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes. Annals of Botany 105(1):165–174. PubMedCrossRefGoogle Scholar
  110. Sun L, Song C, Miao Y, Qiao T, Gong C (2013) Temporal and spatial variability of methane emissions in a northern temperate marsh. Atmospheric Environment 81:356–363. CrossRefGoogle Scholar
  111. Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles 23(2):GB2023. CrossRefGoogle Scholar
  112. Tseng K-H, Tsai J-L, Alagesan A et al (2010) Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agricultural and Forest Meteorology 150(6):852–859. CrossRefGoogle Scholar
  113. Tyagi L, Kumari B, Singh SN (2010) Water management—a tool for methane mitigation from irrigated paddy fields. The Science of the total environment 408(5):1085–1090. PubMedCrossRefGoogle Scholar
  114. van den Berg M, Ingwersen J, Lamers M, Streck T (2016) The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in southwest Germany. Biogeosciences 13(21):6107–6119. CrossRefGoogle Scholar
  115. van der Nat FFW, Middelburg JJ, van Meteren D, Wielemakers A (1998) Diel methane emission patterns from Scirpus Lacustris and Phragmites Australis. Biogeochemistry 41(1):1–22. CrossRefGoogle Scholar
  116. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS3 (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107): 71–75. doi:
  117. Wang H, Liao G, D’Souza M et al (2016) Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environmental Science and Pollution Research International 23(2):1873–1885. PubMedCrossRefGoogle Scholar
  118. Wang C, Lai DYF, Sardans J, Wang W, Zeng C, Peñuelas J (2017) Factors related with CH4 and N2O emissions from a Paddy field: clues for management implications. PloS One 12(1):e0169254. PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wassmann R, Neue H-U, Lantin RS, Buendia LV, Rennenberg H (2000) Characterization of methane Emissions from Rice fields in Asia. I. Comparison among field sites in five countries. Nutrient Cycling in Agroecosystems 58(1/3):1–12. CrossRefGoogle Scholar
  120. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106(447):85–100. CrossRefGoogle Scholar
  121. Weller S, Kraus D, Butterbach-Bahl K et al (2015) Diurnal patterns of methane emissions from paddy rice fields in the Philippines. Journal of Plant Nutrition and Soil Science 178(5):755–767. CrossRefGoogle Scholar
  122. Weller S, Janz B, Jorg L et al (2016) Greenhouse gas emissions and global warming potential of traditional and diversified tropical rice rotation systems. Global Change Biology 22(1):432–448. PubMedCrossRefGoogle Scholar
  123. Welti N, Hayes M, Lockington D (2017) Seasonal nitrous oxide and methane emissions across a subtropical estuarine salinity gradient. Biogeochemistry 132(1–2):55–69. CrossRefGoogle Scholar
  124. Westermann P (1993) Temperature regulation of methanogenesis in wetlands. Chemosphere 26(1–4):321–328. CrossRefGoogle Scholar
  125. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22(1):73–94. CrossRefGoogle Scholar
  126. Whalen SC, Reeburgh WS (1990) Consumption of atmospheric methane by tundra soils. Nature 346(6280):160–162. CrossRefGoogle Scholar
  127. Whiting GJ, Chanton JP (1993) Primary production control of methane emission from wetlands. Nature 364(6440):794–795. CrossRefGoogle Scholar
  128. Wik M, Crill PM, Varner RK, Bastviken D (2013) Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research. Biogeosciences 118(3):1307–1321. CrossRefGoogle Scholar
  129. Wille C, Kutzbach L, Sachs T, Wagner D, Pfeiffer EM (2008) Methane emission from Siberian arctic polygonal tundra: Eddy covariance measurements and modeling. Global Change Biology 14(6):1395–1408. CrossRefGoogle Scholar
  130. Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  131. Yang WB, Yuan CS, Tong C, Yang P, Yang L, Huang BQ (2017) Diurnal variation of CO2, CH4, and N2O emission fluxes continously monitored in-situ in three environmental habitats in a subtropical estuarine wetland. Marine Pollution Bulletin 119(1):289–298. PubMedCrossRefGoogle Scholar
  132. Zeikus JG, Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. Applied and Environmental Microbiology 31.1(1976):99–107Google Scholar
  133. Zhang B, TIAN H, Lu C, Chen G, Pan S, Anderson C, Poulter B (2017) Methane emissions from global wetlands. An assessment of the uncertainty associated with various wetland extent data sets. Atmospheric Environment 165:310–321. CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2017

Authors and Affiliations

  1. 1.Climatology Working GroupUniversity of MünsterMünsterGermany
  2. 2.Department of GeographyNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of GeographyUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations