Skip to main content

Advertisement

Log in

A Generalized Model of Hourly Net Ecosystem Exchange (NEE) for Florida Everglades Freshwater Wetlands

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

A generalized model is presented to estimate the diurnal cycle of hourly net ecosystem exchange (NEE) based on a corresponding single reference-time observation from the Florida Everglades freshwater wetlands. The year-round diurnal cycles of NEE for two different (short vs. long hydroperiod) marsh sites were normalized by the corresponding day- and site-specific reference observations of NEE to obtain a common dimensionless cycle. An extended stochastic harmonic analysis (ESHA) was utilized to calibrate and validate the model with hourly eddy-covariance observations of NEE during 2008–13. The model involved five parameters, which exhibited spatiotemporal robustness by collapsing into narrow ranges among different days, years and sites. The daily estimates were averaged over all calibration days to calculate the site-specific ensemble parameter sets. The site-specific ensemble parameters were further averaged over four mid-day reference times (11 A.M. to 2 P.M.) across sites to obtain a generalized ensemble parameter set. Estimated hourly NEE using the site-specific and the generalized parameter sets indicated a good performance of the model (e.g., Nash-Sutcliffe Efficiency, NSE = 0.66–0.89). The model is represented in three standalone formats, including an Excel spreadsheet, to simulate the hourly NEE for the desired Julian days and years from the respective single reference observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul-Aziz OI, Ishtiaq KS (2014) Robust empirical modeling of dissolved oxygen in small rivers and streams: scaling by a single reference observation. Journal of Hydrology 511:648–657

    Article  CAS  Google Scholar 

  • Abdul-Aziz OI, Wilson BN, Gulliver JS (2007) An extended stochastic harmonic analysis (ESHA) algorithm: application for dissolved oxygen. Water Resources Research 43, doi:10.1029/2006WR005530

  • Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716–723

    Article  Google Scholar 

  • AmeriFlux (2016) Data retrieved from http://ameriflux.lbl.gov/ Accessed 01 September 2016

  • Aubinet M, Vesala T, Papale D (2012) Eddy Covariance: a practical guide to measurement and data analysis. Springer Science and Business Media, New York

  • Beer C, Reichstein M, Tomelleri Ciais EP, Jung M, Carvalhais N, Rödenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838

    Article  CAS  PubMed  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Cox DR, Lewis PW (1966) The statistical analysis of series of events. Methuen, London

    Book  Google Scholar 

  • Dyar TR, Alhadeff SJ (2005) Dissolved oxygen characteristics of Georgia streams. Proceedings, 2005 Georgia Water Resources Conference. University of Georgia, Athens, 25–27 April

  • Enquist BJ, Economo EP, Huxman TE, Allen AP, Ignace DD, Gillooly JF (2003) Scaling metabolism from organisms to ecosystems. Nature 423(6940):639–642

    Article  CAS  PubMed  Google Scholar 

  • Ewe SML, Gaiser EE, Childers DL, Iwaniec D, Rivera-Monroy VH, Twilley RR (2006) Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569:459–474

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and forest meteorology 107(1):43–69

    Article  Google Scholar 

  • FCE LTER (2016) Florida Coastal Everglades Long Term Ecological Research. Data retrieved from http://fcelter.fiu.edu/research/sites/ Accessed 01 September 2016

  • Florida Everglades NEE Model (2017) Florida Everglades Net Ecosystem Exchange Model Software. Available online at https://sites.google.com/view/ecological-water/data-and-models

  • Griffis TJ, Rouse WR (2001) Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen. Global Change Biology 7(5):511–530

    Article  Google Scholar 

  • Hollinger DY, Aber J, Dail B et al (2004) Spatial and temporal variability in forest–atmosphere CO2 exchange. Global Change Biology 10(10):1689–1706

    Article  Google Scholar 

  • Hondzo M, Warnaars TA (2008) Coupled effects of small-scale turbulence and phytoplankton biomass in a small stratified lake. Journal of environ. Engineering 134(12):954–960

    CAS  Google Scholar 

  • Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agricultural and Forest Meteorology 121(1):93–111

    Article  Google Scholar 

  • Jimenez KL, Starr G, Staudhammer CL et al (2012) Carbon dioxide exchange rates from short-and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research: Biogeosciences 117:1–17. doi:10.1029/2012JG002117

  • Kumar MR, Pednekar SM, Katsumata M, Antony MK, Kuroda Y, Unnikrishnan AS (2006) Seasonal variation of the diurnal cycle of rainfall in the eastern equatorial Indian Ocean. Theoretical and applied climatology 85(1–2):117–122

    Article  Google Scholar 

  • Malone SL, Staudhammer CL, Loescher HW et al (2014a) Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades. Journal of Geophysical Research: Biogeosciences 119(8):1487–1505

    Google Scholar 

  • Malone SL, Staudhammer CL, Oberbauer SF et al (2014b) El Nin˜o southern oscillation (ENSO) enhances CO2 exchange rates in freshwater marsh ecosystems in the Florida Everglades. PLoS ONE 9(12):e115058. doi:10.1371/journal.pone.0115058

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers SR, Sageman BB, Hinnov LA (2001) Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek limestone member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research 71(4):628–644

    Article  CAS  Google Scholar 

  • Milne BT, Gupta VK, Restrepo C (2002) A scale invariant coupling of plants, water, energy, and terrain. Ecoscience 9(2):191–199

    Article  Google Scholar 

  • Moffat AM, Papale D, Reichstein M et al (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147(3):209–232

    Article  Google Scholar 

  • Moffat AM, Beckstein C, Churkina G, Mund M, Heimann M (2010) Characterization of ecosystem responses to climatic controls using artificial neural networks. Global Change Biology 16:2737–2749. doi:10.1111/j.1365-2486.2010.02171.x

    Article  Google Scholar 

  • Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of Ecology 90(1):25–36

    Article  Google Scholar 

  • Nahlik AM, Fennessy MS (2016) Carbon storage in US wetlands. Nature Communications 7:13835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler JM, Long KS (1997) Development of hydrological indices to aid cumulative impact analysis of riverine wetlands. Regulated Rivers: Research & Management 13(4):317–334

    Article  Google Scholar 

  • O’Connor BL, Hondzo M, Dobraca D, LaPara TM, Finlay JC, Brezonik PL (2006) Quantity-activity relationship of denitrifying bacteria and environmental scaling in streams of a forested watershed. Journal of Geophysical Research 111:G04014

    Google Scholar 

  • Obeysekera J, Browder J, Hornung L, Harwell MA (1999) The natural South Florida system I: climate, geology, and hydrology. Urban Ecosystems 3(3–4):223–244

    Article  Google Scholar 

  • Papale D, Valentini R (2003) A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology 9(4):525–535

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M et al (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4):571–583

    Article  CAS  Google Scholar 

  • Priestley MB (1981) Spectral analysis and time series. Academic Press, London

    Google Scholar 

  • Richardson AD, Hollinger DY (2005) Statistical modeling of ecosystem respiration using eddy covariance data: maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models. Agricultural and Forest Meteorology 131(3):191–208

    Article  Google Scholar 

  • Sagerfors J, Lindroth A, Grelle A, Klemedtsson L, Weslien P, Nilsson, M. (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research: Biogeosciences (2005–2012), 113:G01001. doi:10.1029/2006JG000306

  • Schedlbauer JL, Oberbauer SF, Starr G, Jimenez KL (2010) Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology 150(7):994–1006

    Article  Google Scholar 

  • Schedlbauer JL, Oberbauer SF, Starr G, Jimenez KL (2011) Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh. Journal of Hydrology 411(3):331–341

    Article  Google Scholar 

  • Schedlbauer JL, Munyon JW, Oberbauer SF, Gaiser EE, Starr G (2012) Controls on ecosystem carbon dioxide exchange in short-and long-hydroperiod Florida Everglades freshwater marshes. Wetlands 32(5):801–812

    Article  Google Scholar 

  • Schmidt A, Hanson C, Chan WS, Law BE (2012) Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the AmeriFlux network. Journal of Geophysical Research: Biogeosciences (2005–2012) 117: G04014, doi:10.1029/2012JG002100

  • Stauch VJ, Jarvis AJ (2006) A semi-parametric gap-filling model for eddy covariance CO2 flux time series data. Global Change Biology 12(9):1707–1716

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading, MA

    Google Scholar 

  • Upton G, Cook I (2006) Oxford dictionary of statistics, 2nd edn. Oxford University Press, Oxford

  • US Army Corps of Engineers (USACE) and South Florida Water Management District (SFWMD) (1999) Central and southern Florida project comprehensive review study, final integrated feasibility report and programmatic environmental impact statement. USACE, Jacksonville District, Jacksonville and SFWMD, West Palm Beach 4033 pp

    Google Scholar 

  • Warnaars TA, Hondzo M, Power ME (2007) Abiotic controls on periphyton accrual and metabolism in streams: scaling by dimensionless numbers. Water Resources Research 43:W08425

    Article  Google Scholar 

  • Williams M, Richardson AD, Reichstein M et al (2009) Improving land surface models with FLUXNET data. Biogeosciences 6(7):1341–1359

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by grants from the National Science Foundation CBET Environmental Sustainability (Award No. 1561941/1336911), and the National Oceanic and Atmospheric Administration (Grant No. NA09NOS4190153 and NA14NOS4190145). The supports are thankfully acknowledged. We are grateful to the Principal Investigators (Dr. Gregory Starr and Dr. Steve Oberbauer) of the following AmeriFlux sites for publicly sharing their data records: Florida Everglades short hydroperiod marsh and Florida Everglades long hydroperiod marsh. Funding for the AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. We also thank two anonymous reviewers and the Associate Editor for providing insightful comments on the primary manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar I. Abdul-Aziz.

Electronic supplementary material

ESM 1

(PDF 574 KB)

ESM 2

(XLSM 1.33 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishtiaq, K.S., Abdul-Aziz, O.I. A Generalized Model of Hourly Net Ecosystem Exchange (NEE) for Florida Everglades Freshwater Wetlands. Wetlands 37, 925–939 (2017). https://doi.org/10.1007/s13157-017-0928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0928-y

Keywords

Navigation