CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau

Abstract

Alpine wetland on the Qinghai-Tibetan Plateau holds the highest organic carbon density of plateau ecosystems and is among the most sensitive areas to climate change. Understanding CO2 exchange and its environmental forces in this specific ecosystem can benefit constraints of carbon budgets from site to global scale under future climate change. Here we investigated CO2 flux measurements from 2009 to 2013 in a wide-distributed alpine wetland, Kobresia littledalei-Blysmus sinocompressus swamp meadow, by eddy covariance (EC) on the central Tibetan Plateau. Results showed diurnal variation of net ecosystem CO2 exchange (NEE) was affected by photosynthetically active radiation (PAR), and this alpine swamp meadow had a high maximum ecosystem photosynthesis rate (Amax) with 32.96 μmol CO2 m−2 s−1. Nighttime ecosystem respiration (Re) rates were well associated with temperature, and average annual temperature sensitivity of Re (Q10) was 3.2. Both temperature and relative humidity (RH) played key roles in regulations of seasonal NEE, and their interactive effect was only significant in GS, especially when soil temperature at 10 cm was above 6.3 °C. Our results suggested this alpine swamp meadow was a stable CO2 sink with an annual accumulation of −161.85 ± 28.02 g C m−2. However, response of annual Re was more sensitive than GPP to change of temperature and length of growing season (LOG), which implied that future climate warming likely to weaken the CO2 sink of this alpine swamp meadow.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

EC:

Eddy covariance

NEE:

Net ecosystem CO2 exchange

GPP:

Gross primary productivity

Re:

Ecosystem respiration

PAR:

Photosynthetically active radiation

Ta:

Air temperature

RHa:

Air relative humidity

PPT:

Precipitation

Ts:

Soil temperature

Rn:

Net radiation

DW:

Dry weight

AGB:

Above-ground biomass

NDVI:

Normalized difference vegetation index

NG:

Non-growing season

NPG:

Previous non-growing season

NLG:

Later non-growing season

GS:

Growing season

BG:

Bud-growing stage

RG:

Rapid-growing stage

PG:

Peak-growing stage

SG:

Senescent stage

LOG:

Growing season length

DOY:

Day of the year

α :

Apparent quantum yield

Amax :

Maximum ecosystem photosynthesis rate

Q10 :

Temperature sensitivity of Re

References

  1. Alberto MCR, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A et al (2009) CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agricultural and Forest Meteorology 149:1737–1750

    Article  Google Scholar 

  2. Bai J, Xu X, Song M, He Y, Jiang J, Shi P (2011) Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau. Ecology and Environmental Sciences 20:855–859

  3. Baldocchi D (1988) Measuring biosphere-atmosphere exchange of biologically ralated gases with micrometeorological methods. Ecology:1331–1340

  4. Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ et al (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research 45:13–29

  5. Bonneville M-C, Strachan IB, Humphreys ER, Roulet NT (2008) Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology 148:69–81

    Article  Google Scholar 

  6. Bubier J, Crill P, Mosedale A (2002) Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrological Processes 16:3667–3682

    Article  Google Scholar 

  7. Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32:1625–1635

    CAS  Article  Google Scholar 

  8. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    CAS  Article  Google Scholar 

  9. Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X et al (2013a) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology 19:2940–2955

    Article  PubMed  Google Scholar 

  10. Chen JR, Wang QL, Li M, Liu F, Li W, Yin LY (2013b) Effects of deer disturbance on soil respiration in a subtropical floodplain wetland of the Yangtze River. European Journal of Soil Biology 56:65–71

    Article  Google Scholar 

  11. Chen Z, Shao Q, Liu J, Wang J (2012) Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibetan Plateau, based on MODIS remote sensing data. Science China Earth Sciences 42:402–410

    CAS  Google Scholar 

  12. Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology 11:1777–1787

    Article  Google Scholar 

  13. Clay GD, Worrall F (2013) The response of CO2 fluxes from a peat soil to variation in simulated sheep trampling. Geoderma 197:59–66

    Article  Google Scholar 

  14. Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB et al (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108

    CAS  Article  PubMed  Google Scholar 

  15. Curiel yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology 10:161–169

    Article  Google Scholar 

  16. Dalias P, Anderson JM, Bottner P, Coûteaux M-M (2001) Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Global Change Biology 7:181–192

    Article  Google Scholar 

  17. Davidson EA (2016) Biogeochemistry: projections of the soil-carbon deficit. Nature 540:47–48

    CAS  Article  PubMed  Google Scholar 

  18. DeForest J, Noormets A, McNulty S, Sun G, Tenney G, Chen J (2006) Phenophases alter the soil respiration–temperature relationship in an oak-dominated forest. International Journal of Biometeorology 51:135–144

    Article  PubMed  Google Scholar 

  19. Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A et al (2008) Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology 148:821–838

    Article  Google Scholar 

  20. Ding M, Zhang Y, Sun X, Liu L, Wang Z, Bai W (2013) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin 58:396–405

    Article  Google Scholar 

  21. Du J, Jian J, Hong J, Lu H, Chen D (2012) Response of seasonal frozen soil to climate change on Tibet region from 1961 to 2010. Journal of Glaciology and Geocryology 34:512–521

    Google Scholar 

  22. Dušek J, Čížková H, Czerný R, Taufarová K, Šmídová M, Janouš D (2009) Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology 149:1524–1530

    Article  Google Scholar 

  23. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C et al (2001a) Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology 107:71–77

    Article  Google Scholar 

  24. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C et al (2001b) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107:43–69

    Article  Google Scholar 

  25. Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P et al (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6:2879–2893

    CAS  Article  Google Scholar 

  26. Gao R, Wei Z, Dong W (2003) Interannual variation of the beginning date and the ending date of soil freezing in the Tibet Plateau. Journal of Glaciology and Geocryology 25:49–54

    Google Scholar 

  27. Gorham E (1991) Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195

    Article  PubMed  Google Scholar 

  28. Griffis TJ, Rouse WR (2001) Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen. Global Change Biology 7:511–530

    Article  Google Scholar 

  29. Griffis TJ, Rouse WR, Waddington JM (2000) Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochemical Cycles 14:1109–1121

    CAS  Article  Google Scholar 

  30. Han G, Yang L, Yu J, Wang G, Mao P, Gao Y (2012) Environmental controls on NET ecosystem CO2 exchange over a reed (Phragmites australis) Wetland in the Yellow River Delta, China. Estuaries and Coasts 36:401–413

    Article  Google Scholar 

  31. Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N et al (2011) Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige Alpine Wetlands of Southwest China. Wetlands 31:413–422

    Article  Google Scholar 

  32. He GQ, Yang GH, Feng YZ, Jiang Y (2007) Analysis on alpine wetlands eco-system structure and function in Tibet Plateau. Agricultural Research in the Arid Areas 25:185–189

    Google Scholar 

  33. Hirota M, Tang Y, Hu Q, Hirata S, Kato T, Mo W et al (2006) Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems 9:673–688

    CAS  Article  Google Scholar 

  34. Janssens IA, Pilegaard KIM (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology 9:911–918

    Article  Google Scholar 

  35. Jimenez KL, Starr G, Staudhammer CL, Schedlbauer JL, Loescher HW, Malone SL et al (2012) Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research-Biogeosciences 117

  36. Johnson JW (2004) Factors affecting relative weights: the influence of sampling and measurement error. Organizational Research Methods 7:283–299

    Article  Google Scholar 

  37. Kabacoff RI (2011) R in Action, Data analysis and graphics with R: Manning Publications, Westampton, USA, pp 190–192

  38. Kaimai JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorology 56:401–410

    Article  Google Scholar 

  39. Kandel TP, Elsgaard L, Laerke PE (2013) Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. Global Change Biology Bioenergy 5:548–561

    CAS  Article  Google Scholar 

  40. Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y et al (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology 12:1285–1298

    Article  Google Scholar 

  41. Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY et al (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology 124:121–134

    Article  Google Scholar 

  42. Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology 10:1870–1877

    Article  Google Scholar 

  43. Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    CAS  Article  Google Scholar 

  44. Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research 106:3071

    CAS  Article  Google Scholar 

  45. Lang H, Lin P, Lu J (1999) Wetland vegetation in China. Science Press, Beijing

    Google Scholar 

  46. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A et al (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology 16:187–208

    Article  Google Scholar 

  47. Lei HM, Yang DW (2010) Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain. Global Change Biology 16:2944–2957

    Google Scholar 

  48. Leuning R (2006) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorology 123:263–267

    Article  Google Scholar 

  49. Li C, He HL, Liu M, Su W, Fu YL, Zhang LM et al (2008) The design and application of CO2 flux data processing system at ChinaFLUX. Geo-information Science 10:557–565

    Article  Google Scholar 

  50. Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T et al (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology 11:1941–1955

    Article  Google Scholar 

  51. Li Y, Zhao L, Zhao X, Wang Q, Zhang F (2007) The features of soil organic matters supplement and CO2 exchange between ground and atmosphere in alpine wetland ecosystem. Journal of Glaciology and Geocryology 29:940–946

  52. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20:1729–1742

    Article  Google Scholar 

  53. Liu XD, Yin ZY, Shao XM, Qin NS (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. Journal of Geophysical Research-Atmospheres 111: n/a-n/a

  54. Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Functional Ecology 8:315–323

    Article  Google Scholar 

  55. Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M et al (2009) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology 16:2436–2448

    Google Scholar 

  56. Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI et al (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329:838–840

    CAS  Article  PubMed  Google Scholar 

  57. Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A et al (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire-a significant sink after accounting for all C-fluxes. Global Change Biology 14:2317–2332

  58. Niu B, He Y, Zhang X, Fu G, Shi P, Du M et al (2016) Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing 8:592

    Article  Google Scholar 

  59. Niu B, Zhang X, He Y, Shi P, Fu G, Du M et al (2017) Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: a multi-model comparison. Journal of Resources and Ecology 8:57–66

    Article  Google Scholar 

  60. Piao SL, Cui MD, Chen AP, Wang XH, Ciais P, Liu J et al (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 151:1599–1608

    Article  Google Scholar 

  61. Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles 21:GB3018

    Google Scholar 

  62. Polsenaere P, Lamaud E, Lafon V, Bonnefond JM, Bretel P, Delille B et al (2012) Spatial and temporal CO2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences 9:249–268

    CAS  Article  Google Scholar 

  63. Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  64. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439

    Article  Google Scholar 

  65. Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S et al (2002) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Functional Ecology 16:27–39

    Article  Google Scholar 

  66. Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. In: Begon IM, Fitter AH (ed) Advances in ecological research. Volume 26. Academic Press, p 1–68

  67. Running SW, Thornton PE, Nemani R, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer New York, New York, pp 44–57

    Google Scholar 

  68. Sabine CL, Heimann M, Artaxo P, Bakker DC, Chen C-TA, Field CB et al (2004) Current status and past trends of the global carbon cycle. Scope-scientific committee on problems of the environment international council of scientific unions. 62, p 17–44

  69. Saito M, Kato T, Tang Y (2009) Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology 15:221–228

    Article  Google Scholar 

  70. Schedlbauer JL, Oberbauer SF, Starr G, Jimenez KL (2010) Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology 150:994–1006

    Article  Google Scholar 

  71. Shangguan W, Dai Y, Liu B, Zhu A, Duan Q, Wu L et al (2013) A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems 5:212–224

  72. Sullivan PF, Arens SJT, Chimner RA, Welker JM (2007) Temperature and microtopography interact to control carbon cycling in a high arctic fen. Ecosystems 11:61–76

    Article  Google Scholar 

  73. Tian Y, Xiong M, Xiong X, Song G (2003) The organic carbon distribution and flow in wetland soil-plant system in ruoergai plateau. Acta Phytoecologica Sinica 27:490–495

  74. Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q 10 . Global Change Biology 7:223–230

    Article  Google Scholar 

  75. Trumbore SE, Bubier JL, Harden JW, Crill PM (1999) Carbon cycling in boreal wetlands: a comparison of three approaches. Journal of Geophysical Research – Atmospheres 104:27673–27682

    CAS  Article  Google Scholar 

  76. van’t Hoff JH (1898) Über die zunehmende bedeutung der anorganischen chemie. Vortrag, gehalten auf der 70. Versammlung der gesellschaft deutscher naturforscher und rzte zu düsseldorf. Zeitschrift für Anorganische Chemie 18:1–13

    Article  Google Scholar 

  77. Veenendaal EM, Kolle O, Leffelaar PA, Schrier-Uijl AP, Van Huissteden J, Van Walsem J et al (2007) CO2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils. Biogeosciences 4:1027–1040

    CAS  Article  Google Scholar 

  78. Wang C, Zhang YL, Wang ZF, Bai WQ (2010) Analysis of landscape characteristics of the wetland systems in the Lhasa River Basin. Resources Science 32:1634–1642

    Google Scholar 

  79. Wang D, Song C, Wang Y, Zhao Z (2008a) CO2 fluxes in mire and grassland on Ruoergai plateau. Chinese Journal of Applied Ecology 19:285–289

    CAS  PubMed  Google Scholar 

  80. Wang GX, Qian J, Cheng GD, Lai YM (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. The Science of the Total Environment 291:207–217

    CAS  Article  Google Scholar 

  81. Wang Y, Zhou G, Wang Y (2008b) Environmental effects on net ecosystem CO2 exchange at half-hour and month scales over Stipa krylovii steppe in northern China. Agricultural and Forest Meteorology 148:714–722

    Article  Google Scholar 

  82. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    CAS  Article  PubMed  Google Scholar 

  83. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Quarterly Journal of the Royal Meteorological Society 106:85–100

    Article  Google Scholar 

  84. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99:127–150

    Article  Google Scholar 

  85. Wohlfahrt G, Anderson-Dunn M, Bahn M, Balzarolo M, Berninger F, Campbell C et al (2008) Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems 11:1338–1351

    CAS  Article  Google Scholar 

  86. Wu C (1987) Flora Xizangica, vol 5. Sicence press, Beijing

    Google Scholar 

  87. Xu LL, Zhang XZ, Shi PL, Li WH, He YT (2007) Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling 208:129–134

    Article  Google Scholar 

  88. Xu M, Qi Y (2001) Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles 15:687–696

    CAS  Article  Google Scholar 

  89. Yang F, Zhou G (2013) Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China. PLoS One 8:e55418

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Yu GR, Wen XF, Sun XM, Tanner BD, Lee XH, Chen JY (2006) Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology 137:125–137

    Article  Google Scholar 

  91. Zhang F, Liu A, Li Y, Zhao L, Wang Q, Du M (2008) CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica 28:453–462

    CAS  Article  Google Scholar 

  92. Zhang JH, Han SJ, Yu GR (2006a) Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agricultural and Forest Meteorology 137:150–165

    Article  Google Scholar 

  93. Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL et al (2006b) Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology 137:176–187

    Article  Google Scholar 

  94. Zhang Y (2012) Land use and land cover change and the climate change adaptation in Tibetan Plateau. China Meteorological Press, Bei jing

    Google Scholar 

  95. Zhang Y, Wang C, Bai W, Wang Z, Tu Y, Yangjaen D (2010) Alpine wetlands in the Lhasa River Basin, China. Journal of Geographical Sciences 20:375–388

    Article  Google Scholar 

  96. Zhao L, Li Y, Zhao X, Xu S, Tang Y, Yu G (2005) Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chinese Science Bulletin 50:1767–1774

  97. Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S et al (2010) Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences 7:1207–1221

    CAS  Article  Google Scholar 

  98. Zhao L, Li Y, Xu S, Zhou H, Gu S, Yu G et al (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology 12:1940–1953

    Article  Google Scholar 

  99. Zhou L, Zhou G, Jia Q (2009) Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany 91:91–98

    CAS  Article  Google Scholar 

  100. Zhou X, Wan S, Luo Y (2007) Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology 13:761–775

    Google Scholar 

Download references

Acknowledgements

We thank the editors and reviewers for their insightful and valuable comments. The authors are grateful to Sang Bu and other members of the Lhasa Station for Tibetan Plateau Ecological Research, the Chinese Academy of Sciences for their kind assistances with field work. And thanks a lot to Dr. Feng Yunfei, Fu Gang and Wu Jianshaung for their instructive opinions for the improvements of this manuscript. This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (XDB03030401) and the National Natural Science Foundation of China (40603024; 41171044).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongtao He.

Appendix

Appendix

Fig. 9
figure9

Geographical location of the Damxung wetland. a The study site in the map of the Tibetan Plateau. b The geographical position of the study site on the Damxung county. c Real picture of EC observational field

Fig. 10
figure10

Climate records of Damxung county from 1963 to 2013. a The average annual temperature and precipitation records. b The average monthly temperature and ratio of monthly precipitation to annual precipitation. The bars were standard errors of 50 years’ observational data. From 1963 to 2008, Data was extracted from China meteorological data sharing service system (http://cdc.cma.gov.cn/) (open points), while during 2009 to 2013 these were collected from our field measurement (solid points)

Fig. 11
figure11

Relationship between NEE and PAR on clear days during the growing season (P < 0.001). Each column from left to right shows a different growing-season stage: BG bud-growing stage, RG rapid-growing stage, PG peak-growing stage, SG senescent stage

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, B., He, Y., Zhang, X. et al. CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau. Wetlands 37, 525–543 (2017). https://doi.org/10.1007/s13157-017-0888-2

Download citation

Keywords

  • Alpine swamp meadow
  • Eddy covariance
  • Net ecosystem CO2 exchange
  • Tibetan plateau