Skip to main content

Advertisement

Log in

CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Alpine wetland on the Qinghai-Tibetan Plateau holds the highest organic carbon density of plateau ecosystems and is among the most sensitive areas to climate change. Understanding CO2 exchange and its environmental forces in this specific ecosystem can benefit constraints of carbon budgets from site to global scale under future climate change. Here we investigated CO2 flux measurements from 2009 to 2013 in a wide-distributed alpine wetland, Kobresia littledalei-Blysmus sinocompressus swamp meadow, by eddy covariance (EC) on the central Tibetan Plateau. Results showed diurnal variation of net ecosystem CO2 exchange (NEE) was affected by photosynthetically active radiation (PAR), and this alpine swamp meadow had a high maximum ecosystem photosynthesis rate (Amax) with 32.96 μmol CO2 m−2 s−1. Nighttime ecosystem respiration (Re) rates were well associated with temperature, and average annual temperature sensitivity of Re (Q10) was 3.2. Both temperature and relative humidity (RH) played key roles in regulations of seasonal NEE, and their interactive effect was only significant in GS, especially when soil temperature at 10 cm was above 6.3 °C. Our results suggested this alpine swamp meadow was a stable CO2 sink with an annual accumulation of −161.85 ± 28.02 g C m−2. However, response of annual Re was more sensitive than GPP to change of temperature and length of growing season (LOG), which implied that future climate warming likely to weaken the CO2 sink of this alpine swamp meadow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EC:

Eddy covariance

NEE:

Net ecosystem CO2 exchange

GPP:

Gross primary productivity

Re:

Ecosystem respiration

PAR:

Photosynthetically active radiation

Ta:

Air temperature

RHa:

Air relative humidity

PPT:

Precipitation

Ts:

Soil temperature

Rn:

Net radiation

DW:

Dry weight

AGB:

Above-ground biomass

NDVI:

Normalized difference vegetation index

NG:

Non-growing season

NPG:

Previous non-growing season

NLG:

Later non-growing season

GS:

Growing season

BG:

Bud-growing stage

RG:

Rapid-growing stage

PG:

Peak-growing stage

SG:

Senescent stage

LOG:

Growing season length

DOY:

Day of the year

α :

Apparent quantum yield

Amax :

Maximum ecosystem photosynthesis rate

Q10 :

Temperature sensitivity of Re

References

  • Alberto MCR, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A et al (2009) CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agricultural and Forest Meteorology 149:1737–1750

    Article  Google Scholar 

  • Bai J, Xu X, Song M, He Y, Jiang J, Shi P (2011) Effects of temperature and added nitrogen on carbon mineralization in alpine soils on the Tibetan Plateau. Ecology and Environmental Sciences 20:855–859

  • Baldocchi D (1988) Measuring biosphere-atmosphere exchange of biologically ralated gases with micrometeorological methods. Ecology:1331–1340

  • Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ et al (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research 45:13–29

  • Bonneville M-C, Strachan IB, Humphreys ER, Roulet NT (2008) Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology 148:69–81

    Article  Google Scholar 

  • Bubier J, Crill P, Mosedale A (2002) Net ecosystem CO2 exchange measured by autochambers during the snow-covered season at a temperate peatland. Hydrological Processes 16:3667–3682

    Article  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology and Biochemistry 32:1625–1635

    Article  CAS  Google Scholar 

  • Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD et al (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    Article  CAS  Google Scholar 

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X et al (2013a) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology 19:2940–2955

    Article  PubMed  Google Scholar 

  • Chen JR, Wang QL, Li M, Liu F, Li W, Yin LY (2013b) Effects of deer disturbance on soil respiration in a subtropical floodplain wetland of the Yangtze River. European Journal of Soil Biology 56:65–71

    Article  Google Scholar 

  • Chen Z, Shao Q, Liu J, Wang J (2012) Analysis of net primary productivity of terrestrial vegetation on the Qinghai-Tibetan Plateau, based on MODIS remote sensing data. Science China Earth Sciences 42:402–410

    CAS  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao XM (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology 11:1777–1787

    Article  Google Scholar 

  • Clay GD, Worrall F (2013) The response of CO2 fluxes from a peat soil to variation in simulated sheep trampling. Geoderma 197:59–66

    Article  Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB et al (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108

    Article  CAS  PubMed  Google Scholar 

  • Curiel yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology 10:161–169

    Article  Google Scholar 

  • Dalias P, Anderson JM, Bottner P, Coûteaux M-M (2001) Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions. Global Change Biology 7:181–192

    Article  Google Scholar 

  • Davidson EA (2016) Biogeochemistry: projections of the soil-carbon deficit. Nature 540:47–48

    Article  CAS  PubMed  Google Scholar 

  • DeForest J, Noormets A, McNulty S, Sun G, Tenney G, Chen J (2006) Phenophases alter the soil respiration–temperature relationship in an oak-dominated forest. International Journal of Biometeorology 51:135–144

    Article  PubMed  Google Scholar 

  • Desai AR, Richardson AD, Moffat AM, Kattge J, Hollinger DY, Barr A et al (2008) Cross-site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and Forest Meteorology 148:821–838

    Article  Google Scholar 

  • Ding M, Zhang Y, Sun X, Liu L, Wang Z, Bai W (2013) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin 58:396–405

    Article  Google Scholar 

  • Du J, Jian J, Hong J, Lu H, Chen D (2012) Response of seasonal frozen soil to climate change on Tibet region from 1961 to 2010. Journal of Glaciology and Geocryology 34:512–521

    Google Scholar 

  • Dušek J, Čížková H, Czerný R, Taufarová K, Šmídová M, Janouš D (2009) Influence of summer flood on the net ecosystem exchange of CO2 in a temperate sedge-grass marsh. Agricultural and Forest Meteorology 149:1524–1530

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C et al (2001a) Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology 107:71–77

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C et al (2001b) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology 107:43–69

    Article  Google Scholar 

  • Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P et al (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6:2879–2893

    Article  CAS  Google Scholar 

  • Gao R, Wei Z, Dong W (2003) Interannual variation of the beginning date and the ending date of soil freezing in the Tibet Plateau. Journal of Glaciology and Geocryology 25:49–54

    Google Scholar 

  • Gorham E (1991) Northern Peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1:182–195

    Article  PubMed  Google Scholar 

  • Griffis TJ, Rouse WR (2001) Modelling the interannual variability of net ecosystem CO2 exchange at a subarctic sedge fen. Global Change Biology 7:511–530

    Article  Google Scholar 

  • Griffis TJ, Rouse WR, Waddington JM (2000) Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Global Biogeochemical Cycles 14:1109–1121

    Article  CAS  Google Scholar 

  • Han G, Yang L, Yu J, Wang G, Mao P, Gao Y (2012) Environmental controls on NET ecosystem CO2 exchange over a reed (Phragmites australis) Wetland in the Yellow River Delta, China. Estuaries and Coasts 36:401–413

    Article  Google Scholar 

  • Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N et al (2011) Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige Alpine Wetlands of Southwest China. Wetlands 31:413–422

    Article  Google Scholar 

  • He GQ, Yang GH, Feng YZ, Jiang Y (2007) Analysis on alpine wetlands eco-system structure and function in Tibet Plateau. Agricultural Research in the Arid Areas 25:185–189

    Google Scholar 

  • Hirota M, Tang Y, Hu Q, Hirata S, Kato T, Mo W et al (2006) Carbon dioxide dynamics and controls in a deep-water wetland on the Qinghai-Tibetan Plateau. Ecosystems 9:673–688

    Article  CAS  Google Scholar 

  • Janssens IA, Pilegaard KIM (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology 9:911–918

    Article  Google Scholar 

  • Jimenez KL, Starr G, Staudhammer CL, Schedlbauer JL, Loescher HW, Malone SL et al (2012) Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research-Biogeosciences 117

  • Johnson JW (2004) Factors affecting relative weights: the influence of sampling and measurement error. Organizational Research Methods 7:283–299

    Article  Google Scholar 

  • Kabacoff RI (2011) R in Action, Data analysis and graphics with R: Manning Publications, Westampton, USA, pp 190–192

  • Kaimai JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorology 56:401–410

    Article  Google Scholar 

  • Kandel TP, Elsgaard L, Laerke PE (2013) Measurement and modelling of CO2 flux from a drained fen peatland cultivated with reed canary grass and spring barley. Global Change Biology Bioenergy 5:548–561

    Article  CAS  Google Scholar 

  • Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y et al (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology 12:1285–1298

    Article  Google Scholar 

  • Kato T, Tang YH, Gu S, Cui XY, Hirota M, Du MY et al (2004) Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agricultural and Forest Meteorology 124:121–134

    Article  Google Scholar 

  • Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology 10:1870–1877

    Article  Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629

    Article  CAS  Google Scholar 

  • Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. Journal of Geophysical Research 106:3071

    Article  CAS  Google Scholar 

  • Lang H, Lin P, Lu J (1999) Wetland vegetation in China. Science Press, Beijing

    Google Scholar 

  • Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A et al (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global Change Biology 16:187–208

    Article  Google Scholar 

  • Lei HM, Yang DW (2010) Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain. Global Change Biology 16:2944–2957

    Google Scholar 

  • Leuning R (2006) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorology 123:263–267

    Article  Google Scholar 

  • Li C, He HL, Liu M, Su W, Fu YL, Zhang LM et al (2008) The design and application of CO2 flux data processing system at ChinaFLUX. Geo-information Science 10:557–565

    Article  Google Scholar 

  • Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T et al (2005) Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology 11:1941–1955

    Article  Google Scholar 

  • Li Y, Zhao L, Zhao X, Wang Q, Zhang F (2007) The features of soil organic matters supplement and CO2 exchange between ground and atmosphere in alpine wetland ecosystem. Journal of Glaciology and Geocryology 29:940–946

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology 20:1729–1742

    Article  Google Scholar 

  • Liu XD, Yin ZY, Shao XM, Qin NS (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. Journal of Geophysical Research-Atmospheres 111: n/a-n/a

  • Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Functional Ecology 8:315–323

    Article  Google Scholar 

  • Lund M, Lafleur PM, Roulet NT, Lindroth A, Christensen TR, Aurela M et al (2009) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology 16:2436–2448

    Google Scholar 

  • Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI et al (2010) Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329:838–840

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A et al (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire-a significant sink after accounting for all C-fluxes. Global Change Biology 14:2317–2332

  • Niu B, He Y, Zhang X, Fu G, Shi P, Du M et al (2016) Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing 8:592

    Article  Google Scholar 

  • Niu B, Zhang X, He Y, Shi P, Fu G, Du M et al (2017) Satellite-based estimation of gross primary production in an alpine swamp meadow on the Tibetan Plateau: a multi-model comparison. Journal of Resources and Ecology 8:57–66

    Article  Google Scholar 

  • Piao SL, Cui MD, Chen AP, Wang XH, Ciais P, Liu J et al (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology 151:1599–1608

    Article  Google Scholar 

  • Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles 21:GB3018

    Google Scholar 

  • Polsenaere P, Lamaud E, Lafon V, Bonnefond JM, Bretel P, Delille B et al (2012) Spatial and temporal CO2 exchanges measured by Eddy Covariance over a temperate intertidal flat and their relationships to net ecosystem production. Biogeosciences 9:249–268

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P et al (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439

    Article  Google Scholar 

  • Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S et al (2002) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. Functional Ecology 16:27–39

    Article  Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: a review. In: Begon IM, Fitter AH (ed) Advances in ecological research. Volume 26. Academic Press, p 1–68

  • Running SW, Thornton PE, Nemani R, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer New York, New York, pp 44–57

    Chapter  Google Scholar 

  • Sabine CL, Heimann M, Artaxo P, Bakker DC, Chen C-TA, Field CB et al (2004) Current status and past trends of the global carbon cycle. Scope-scientific committee on problems of the environment international council of scientific unions. 62, p 17–44

  • Saito M, Kato T, Tang Y (2009) Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biology 15:221–228

    Article  Google Scholar 

  • Schedlbauer JL, Oberbauer SF, Starr G, Jimenez KL (2010) Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology 150:994–1006

    Article  Google Scholar 

  • Shangguan W, Dai Y, Liu B, Zhu A, Duan Q, Wu L et al (2013) A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems 5:212–224

  • Sullivan PF, Arens SJT, Chimner RA, Welker JM (2007) Temperature and microtopography interact to control carbon cycling in a high arctic fen. Ecosystems 11:61–76

    Article  Google Scholar 

  • Tian Y, Xiong M, Xiong X, Song G (2003) The organic carbon distribution and flow in wetland soil-plant system in ruoergai plateau. Acta Phytoecologica Sinica 27:490–495

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q 10 . Global Change Biology 7:223–230

    Article  Google Scholar 

  • Trumbore SE, Bubier JL, Harden JW, Crill PM (1999) Carbon cycling in boreal wetlands: a comparison of three approaches. Journal of Geophysical Research – Atmospheres 104:27673–27682

    Article  CAS  Google Scholar 

  • van’t Hoff JH (1898) Über die zunehmende bedeutung der anorganischen chemie. Vortrag, gehalten auf der 70. Versammlung der gesellschaft deutscher naturforscher und rzte zu düsseldorf. Zeitschrift für Anorganische Chemie 18:1–13

    Article  Google Scholar 

  • Veenendaal EM, Kolle O, Leffelaar PA, Schrier-Uijl AP, Van Huissteden J, Van Walsem J et al (2007) CO2 exchange and carbon balance in two grassland sites on eutrophic drained peat soils. Biogeosciences 4:1027–1040

    Article  CAS  Google Scholar 

  • Wang C, Zhang YL, Wang ZF, Bai WQ (2010) Analysis of landscape characteristics of the wetland systems in the Lhasa River Basin. Resources Science 32:1634–1642

    Google Scholar 

  • Wang D, Song C, Wang Y, Zhao Z (2008a) CO2 fluxes in mire and grassland on Ruoergai plateau. Chinese Journal of Applied Ecology 19:285–289

    CAS  PubMed  Google Scholar 

  • Wang GX, Qian J, Cheng GD, Lai YM (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. The Science of the Total Environment 291:207–217

    Article  CAS  Google Scholar 

  • Wang Y, Zhou G, Wang Y (2008b) Environmental effects on net ecosystem CO2 exchange at half-hour and month scales over Stipa krylovii steppe in northern China. Agricultural and Forest Meteorology 148:714–722

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Quarterly Journal of the Royal Meteorological Society 106:85–100

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99:127–150

    Article  Google Scholar 

  • Wohlfahrt G, Anderson-Dunn M, Bahn M, Balzarolo M, Berninger F, Campbell C et al (2008) Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. Ecosystems 11:1338–1351

    Article  CAS  Google Scholar 

  • Wu C (1987) Flora Xizangica, vol 5. Sicence press, Beijing

    Google Scholar 

  • Xu LL, Zhang XZ, Shi PL, Li WH, He YT (2007) Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling 208:129–134

    Article  Google Scholar 

  • Xu M, Qi Y (2001) Spatial and seasonal variations of Q 10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles 15:687–696

    Article  CAS  Google Scholar 

  • Yang F, Zhou G (2013) Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China. PLoS One 8:e55418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GR, Wen XF, Sun XM, Tanner BD, Lee XH, Chen JY (2006) Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology 137:125–137

    Article  Google Scholar 

  • Zhang F, Liu A, Li Y, Zhao L, Wang Q, Du M (2008) CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica 28:453–462

    Article  CAS  Google Scholar 

  • Zhang JH, Han SJ, Yu GR (2006a) Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agricultural and Forest Meteorology 137:150–165

    Article  Google Scholar 

  • Zhang LM, Yu GR, Sun XM, Wen XF, Ren CY, Fu YL et al (2006b) Seasonal variations of ecosystem apparent quantum yield (α) and maximum photosynthesis rate (Pmax) of different forest ecosystems in China. Agricultural and Forest Meteorology 137:176–187

    Article  Google Scholar 

  • Zhang Y (2012) Land use and land cover change and the climate change adaptation in Tibetan Plateau. China Meteorological Press, Bei jing

    Google Scholar 

  • Zhang Y, Wang C, Bai W, Wang Z, Tu Y, Yangjaen D (2010) Alpine wetlands in the Lhasa River Basin, China. Journal of Geographical Sciences 20:375–388

    Article  Google Scholar 

  • Zhao L, Li Y, Zhao X, Xu S, Tang Y, Yu G (2005) Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau. Chinese Science Bulletin 50:1767–1774

  • Zhao L, Li J, Xu S, Zhou H, Li Y, Gu S et al (2010) Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau. Biogeosciences 7:1207–1221

    Article  CAS  Google Scholar 

  • Zhao L, Li Y, Xu S, Zhou H, Gu S, Yu G et al (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology 12:1940–1953

    Article  Google Scholar 

  • Zhou L, Zhou G, Jia Q (2009) Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany 91:91–98

    Article  CAS  Google Scholar 

  • Zhou X, Wan S, Luo Y (2007) Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology 13:761–775

    Google Scholar 

Download references

Acknowledgements

We thank the editors and reviewers for their insightful and valuable comments. The authors are grateful to Sang Bu and other members of the Lhasa Station for Tibetan Plateau Ecological Research, the Chinese Academy of Sciences for their kind assistances with field work. And thanks a lot to Dr. Feng Yunfei, Fu Gang and Wu Jianshaung for their instructive opinions for the improvements of this manuscript. This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (XDB03030401) and the National Natural Science Foundation of China (40603024; 41171044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongtao He.

Appendix

Appendix

Fig. 9
figure 9

Geographical location of the Damxung wetland. a The study site in the map of the Tibetan Plateau. b The geographical position of the study site on the Damxung county. c Real picture of EC observational field

Fig. 10
figure 10

Climate records of Damxung county from 1963 to 2013. a The average annual temperature and precipitation records. b The average monthly temperature and ratio of monthly precipitation to annual precipitation. The bars were standard errors of 50 years’ observational data. From 1963 to 2008, Data was extracted from China meteorological data sharing service system (http://cdc.cma.gov.cn/) (open points), while during 2009 to 2013 these were collected from our field measurement (solid points)

Fig. 11
figure 11

Relationship between NEE and PAR on clear days during the growing season (P < 0.001). Each column from left to right shows a different growing-season stage: BG bud-growing stage, RG rapid-growing stage, PG peak-growing stage, SG senescent stage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, B., He, Y., Zhang, X. et al. CO2 Exchange in an Alpine Swamp Meadow on the Central Tibetan Plateau. Wetlands 37, 525–543 (2017). https://doi.org/10.1007/s13157-017-0888-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-017-0888-2

Keywords

Navigation