Skip to main content

Advertisement

Log in

Disaggregating the Patchwork:

Probabilistic models as tools to predict wetland presence as a continuous gradient

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Identification and inventory of wetlands are essential components of natural resource management. To be effective in these endeavors, it is critical that the process used to detect and document wetlands be time efficient, accurate, and repeatable as new environmental information becomes available. Approaches dependent on aerial photographic interpretation of land cover by individual human analysts necessitate hours of assessment, introduce human error, and fail to include the best available soils and hydrologic data. The goal of the current study is to apply hierarchical modeling and Bayesian inference to predict the probability of wetland presence as a continuous gradient with the explicit consideration of spatial structure. The presented spatial statistical model can evaluate 100 km 2 at a 50 x 50 meter resolution in approximately 50 minutes while simultaneously incorporating ancillary data and accounting for latent spatial processes. Model results demonstrate an ability to consistently capture wetlands identified through aerial interpretation with greater than 90 % accuracy (scaled Brier Score) and to identify wetland extents, ecotones, and hydrologic connections not identified through use of other modeling and mapping techniques. The provided model is reasonably robust to changes in resolution, areal extents between 100 km 2 and 300 km 2, and region-specific physical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecology and Management 18(3):281–296. doi:10.1007/s11273-009-9169-z

    Article  Google Scholar 

  • Barbier EB (2011) Wetlands as natural assets. Hydrological Sciences Journal 56(8):1360–1373. doi:10.1080/02626667.2011.629787

    Article  Google Scholar 

  • Beaudette D, Skovlin J, Roecker S (2016) soilDB: Soil Database Interface. https://CRAN.R-project.org/package=soilDB, r package version 1.8

  • Belsley DA, Kuh E, Welsch RE (1980) Identifying influential data and sources of collinearity. Wiley, New Jersey

    Book  Google Scholar 

  • Besag J (1975) Statistical analysis of non-lattice data. Journal of the Royal Statistical Society Series D (The Statistician) 24:179–195

    Google Scholar 

  • Bivand R, Piras G (2015) Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software 63(18)

  • Christensen N (1996) The Report of the Ecological Society of America Committee on the Scientific Basis for Ecosystem Management. Ecological Applications 6(3):665–691. doi:10.2307/2269460

    Article  Google Scholar 

  • Dahl TE (2011) Status and Trends of Wetlands in the Conterminous United States 2004 to 2009. US Department of the Interior; Fish and Wildlife Service, Washington, DC (November): 108

  • Dvorett D, Bidwell J, Davis C, DuBois C (2012) Developing a hydrogeomorphic wetland inventory: Reclassifying national wetlands inventory polygons in geographic information systems. Wetlands 32(1):83–93. doi:10.1007/s13157-011-0247-7

    Article  Google Scholar 

  • Elsner JB, Fricker TW, HMC, Humphreys J, Jung J, Gredzens C (2016) The relationship between elevation roughness and tornado activity: A spatial statistical model fit to data from the Central Great Plains. Journal of Applied Meteorology and Climatology 55(4):849–859. doi:10.1175/JAMC-D-15-0225.1

    Article  Google Scholar 

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landscape Ecology 24(5):673–683. doi:10.1007/s10980-009-9341-0

    Article  Google Scholar 

  • Finlayson CM, Davidson NC, Spiers AG, Stevenson NJ (1999) Global wetland inventory – current status and future priorities. Marine and Freshwater Research 50(8):717. doi:10.1071/MF99098

    Article  Google Scholar 

  • Fish and Wildlife Service (2009) Status Report for the National Wetlands Inventory Program: 2009. Tech. rep., U.S. Fish and Wildlife Service, Arlington, Virginia 22203

  • Galbraith JM, Donovan PF, Smith KM, Zipper CE (2003) Using Public Domain Data To Aid in Field Identification of Hydric Soils. Soil Science 168(8):563–575. doi:10.1097/01.ss.0000085049.25696.84

    Article  CAS  Google Scholar 

  • Hendricks J, Pelzer B (1991) Collinearity involving ordered and unordered categorical variables. RC33 conference in Amsterdam:1–17

  • Hoeting J A (2009) HoetingThe importance of accounting for spatial and temporal correlation in analyses of ecological data. Ecological applications 19(3):574–577

    Article  PubMed  Google Scholar 

  • Hu B, Palta M, Shao J (2006) Properties of R(2) statistics for logistic regression. Statistics in Medicine 25(8):1383–95. doi:10.1002/sim.2300

    Article  PubMed  Google Scholar 

  • Kahle D, Wickham H (2013) ggmap: Spatial Visualization with ggplot2. The R Journal 5(1):144–161

    Google Scholar 

  • Lang M, McDonough O, McCarty G, Oesterling R, Wilen B (2012) Enhanced detection of wetland-stream connectivity using lidar. Wetlands 32(3):461–473. doi:10.1007/s13157-012-0279-7

    Article  Google Scholar 

  • Lang M, McCarty G, Oesterling R, Yeo IY (2013) Topographic metrics for improved mapping of forested wetlands. Wetlands 33(1):141–155. doi:10.1007/s13157-012-0359-8

    Article  Google Scholar 

  • Lausch A, Blaschke T, Haase D, Herzog F, Syrbe R, Tischendorf L, Walz U (2015) Understanding and quantifying landscape structure – A review on relevant process characteristics, data models and landscape metrics. Ecological Modelling 295(August):31–41. doi:10.1016/j.ecolmodel.2014.08.018

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR : An R package for multivariate analysis. J Stat Softw 25 (1):1–18. doi:10.1016/j.envint.2008.06.007

    Article  Google Scholar 

  • Martin GI, Kirkman LK, Jeffrey HC (2012) Mapping geographically isolated wetlands in the dougherty plain, georgia, USA. Wetlands 32:149–160. doi:10.1007/s13157-011-0263-7

    Article  Google Scholar 

  • Masek J, Vermote E, Saleous N, Wolfe R, Hall F, Huemmrich F, Gao F, Kutler J, Lim T K (2006) A Landsat surface reflectance data set for North America. IEEE Geoscience and Remote Sensing Letters 3:68–72

    Article  Google Scholar 

  • Mccauley L A, Jenkins D G (2005) GIS-Based Estimates of Former and Current Depressional Wetlands in an Agricultural Landscape Published by : Ecological Society of America GIS-BASED ESTIMATES OF FORMER AND CURRENT DEPRESSIONAL WETLANDS IN AN AGRICULTURAL LANDSCAPE. Ecological Applications 15 (4):1199–1208

    Article  Google Scholar 

  • McGarigal K (2005) The Gradient Concept of Landscape Structure. In: Issues and perspectives in landscape ecology. Cambridge University Press, pp 112–119

  • McGarigal K, Tagil S, Cushman SA (2009) Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landscape Ecology 24(3):433–450. doi:10.1007/s10980-009-9327-y

    Article  Google Scholar 

  • Meixler MS, Bain MB (2010) Landscape scale assessment of stream channel and riparian habitat restoration needs. Landscape and Ecological Engineering 6(2):235–245. doi:10.1007/s11355-010-0103-6

    Article  Google Scholar 

  • Mitsch WJ, Gossilink JG (2000) The value of wetlands: Importance of scale and landscape setting. Ecological Economics 35(1):25–33. doi:10.1016/S0921-8009(00)00165-8

    Article  Google Scholar 

  • Moore I D, Gessler P E, NG A, Petersen G A (1993) Terrain attributes: estimation methods and scale effects. In: Jakeman JA, Beck MB, Wiley MM (eds) Modeling Change in Environmental Systems, London, pp 189–214

  • Murphy C, Ogil S, Arp PA (2007) Mapping wetlands: A comparison of two different approaches for New Brunswick, Canada. Wetlands 27(4):846–854. doi:10.1672/0277-5212(2007)27

    Article  Google Scholar 

  • Pennock D, Bedard-Haughn A, Kiss J, van der Kamp G (2014) Application of hydropedology to predictive mapping of wetland soils in the Canadian Prairie Pothole Region. Geoderma 235-236:199–211. doi:10.1016/j.geoderma.2014.07.008

  • R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rebelo LM, Finlayson CM, Nagabhatla N (2009) Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management 90(7):2144–2153. doi:10.1016/j.jenvman.2007.06.027

    Article  PubMed  Google Scholar 

  • Reif M, Frohn RC, Lane CR, Autrey B (2009) Mapping Isolated Wetlands in a Karst Landscape: GIS and Remote Sensing Methods. GIScience & Remote Sensing 46(2):187–211. doi:10.2747/1548-1603.46.2.187

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology 71(2):319–392. doi:10.1111/j.1467-9868.2008.00700.x

    Article  Google Scholar 

  • Rue H, Martino S, Lindgren F, Simpson D, Riebler A, Krainski E T (2014) INLA: Functions which allow to perform a full Bayesian analysis of structured (geo-)additive models using Integrated Nested Laplace Approximation. R package version 00-1383402327

  • Turner MG (1989) Landscape Ecology: The Effect of Pattern on Process. Annual Review of Ecology and Systematics 20(1):171–197. doi:10.1146/annurev.es.20.110189.001131

    Article  Google Scholar 

  • Veihmeyer F, Hendrickson AH (1927) The relation of soil moisture to cultivation and plant growth. 1st Intern Congr Soil Sci 3:498–513

    Google Scholar 

  • Wiens JJA (1989) Spatial scaling in ecology. Functional Ecology 3(4):385–397. doi:10.2307/2389612

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: An idiosyncratic synthesis. Landscape Ecology 17(3):355–365. doi:10.1023/A:1020561630963

    Article  Google Scholar 

  • Wu J, Hobbs R (2007) Scale and scaling : a cross-disciplinary perspective. In: Key Topics in Landscape Ecology, Cambridge University Press, chap 7, pp 115–142

  • Wu J, Loucks O (1995) From balance of nature to hierarchical patch dynamics. The Quarterly Review of Biology 70(4):439–466

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded in part by an U.S. Environmental Protection Agency Wetland Program Development Grant (00D14313) and support from the Florida Department of Environmental Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Humphreys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphreys, J.M., Elsner, J.B., Jagger, T.H. et al. Disaggregating the Patchwork:. Wetlands 37, 205–219 (2017). https://doi.org/10.1007/s13157-016-0859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0859-z

Keywords

Navigation