Skip to main content
Log in

Leaf Litter and Invertebrate Colonization: the Role of Macroconsumers in a Subtropical Wetland (Corrientes, Argentina)

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We studied the breakdown rates and the invertebrate abundance and biomass for the litter of five native aquatic plants (Eichhornia crassipes, Eichhornia azurea, Thalia multiflora, Oxycaryum cubense and Hydrocotyle ranunculoides) in a shallow rain-fed lake using litter bags. The diets of the prawn Pseudopalaemon bouvieri and the amphipod Hyalella curvispina were determined and classified into five food items. Litter breakdown was fast (>0.010 day−1) for all species studied, although the breakdown rates were significantly affected by the litter species. The abundance of invertebrates colonizing the litter was significantly different among the species, but the biomass did not differ. The invertebrate taxa that colonized the litter of the different species were broadly similar, consisting primarily of oligochaetes, amphipods, prawns, ostracods, gastropods, water mites and several types of insect larvae (chironomids and mayflies). In terms of the number of individuals, naidid oligochaetes dominated the assemblages. In terms of biomass, P. bouvieri and H. curvispina reached 67.6 and 18.2 % of the total, respectively. Our results indicate that macroconsumers are involved in the breakdown process, since these species consume plant remains and detritus and highlight the importance of leaf litter composition on the abundance of invertebrates that colonize the litter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abelho M (2001) From litter fall to breakdown in streams: a review. TheScientificWorldJournal 1:656–680

    Article  CAS  PubMed  Google Scholar 

  • AOAC - Association of Official Analytical Chemists (1990) Phosphorus in animal feed, photometric methods. AOAC, Arlington

    Google Scholar 

  • APHA (1998) Standard methods for the examination of water and waste water, twentieth edition. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, DC, USA

  • Batzer DP, Rader RB, Wissinger SA (eds) (1999) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York

    Google Scholar 

  • Bottino F, Calijuri M, Murphy KJ (2013) Organic matter cycling in a Neotropical reservoir: effects of temperature and experimental conditions. Acta Limnologica Brasiliensia 25:192–201

    Article  Google Scholar 

  • Boulton AJ, Boyero L, Covich AP, Dobson MK, Lake PS, Pearson RG (2008) Are tropical streams ecologically different from temperate streams? In: Dudgeon D (ed) Tropical stream ecology (aquatic ecology series). Academic, San Diego, pp 257–284

    Chapter  Google Scholar 

  • Boyero L, Pearson RG, Dudgeon D, Ferreira V (2012) Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Global Ecology and Biogeography 21:134–141

    Article  Google Scholar 

  • Bruniard ED (1999) Los regímenes hídricos de las formaciones vegetales. Aportes para un modelo fotoclimático mundial. Editorial Universitaria de la Universidad Nacional del Nordeste, Resistencia

    Google Scholar 

  • Bruquetas de Zozaya IY, Neiff JJ (1991) Decomposition and colonization by invertebrates of Typha latifolia L. litter in Chaco cattail swamp (Argentina). Aquatic Botany 40:185–193

    Article  Google Scholar 

  • Capello S, Marchese M, Ezcurra de Drago I (2004) Descomposición y colonización por invertebrados de hojas de Salix humboldtiana en la llanura aluvial del río Paraná Medio. Amazoniana 18:125–143

    Google Scholar 

  • Carignan R, Neiff JJ (1992) Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17:85–121

    Article  CAS  Google Scholar 

  • Carnevali RP, Collins PA, Poi de Neiff ASG (2012) Trophic ecology of the freshwater prawn Pseudopalaemon bouvieri in Northeastern Argentina with remarks on population structure. Revista de Biología Tropical 60:305–316

    Article  PubMed  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26

    Article  Google Scholar 

  • Chauvet E, Giani N, Gessner MO (1993) Breakdown and invertebrate colonization of leaf litter in two contrasting streams: significance of Oligochaetes in a large river. Canadian Journal of Fisheries and Aquatic Sciences 50:488–496

    Article  Google Scholar 

  • Cross WF, Covich AP, Crowl TA, Benstead JP, Ramírez A (2008) Secondary production, longevity and resource consumption rates of freshwater shrimps in two tropical streams with contrasting geomorphology and food web structure. Freshwater Biology 53:2504–2519

    Article  Google Scholar 

  • Crossley DA Jr, Hoglund MP (1962) A litter-bag method for the study of microarthropods inhabiting leaf litter. Ecology 43:571–574

    Article  Google Scholar 

  • Crowl TA, Welsh V, Heartsill-Scalley T, Covich AP (2006) Effects of different types of conditioning on rates of leaf-litter shredding by Xiphocaris elongata, a Neotropical freshwater shrimp. Journal of the North American Benthological Society 25:198–208

    Article  Google Scholar 

  • Di Rienzo J A, Casanoves F, Balzarini M G, González L, Tablada M, Robledo C W (2012) InfoStat versión 2012. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar

  • Dobson MK (2004) Freshwater crabs in Africa. Freshwater Forum 21:3–26

    Google Scholar 

  • Dobson MK, Magana AM, Lancaster J, Mathooko JM (2007) Aseasonality in the abundance and life history of an ecologically dominant freshwater crabs in the Rift Valley, Kenya. Freshwater Biology 52:215–225

    Article  Google Scholar 

  • Domínguez E, Fernández HR (eds) (2009) Macroinvertebrados bentónicos sudamericanos, sistemática y biología. Fundación Miguel Lillo, Tucumán, Argentina

    Google Scholar 

  • Dudgeon D, Wu KKY (1999) Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Archiv für Hydrobiologie 146:65–82

    Article  Google Scholar 

  • Franceschini MC, Poi A, Galassi ME (2010) Is the biomass of water hyacinth lost through herbivory in native areas important? Aquatic Botany 92:250–256

    Article  Google Scholar 

  • Galizzi MC, Marchese M (2007) Descomposición de hojas de Tessaria integrifolia (Asteraceae) y colonización por invertebrados en un cauce secundario del río Paraná Medio. Interciencia 32:535–540

    Google Scholar 

  • Gonçalves JF, Graça MAS, Callisto M (2006) Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25:344–355

    Article  Google Scholar 

  • Graça M, Ferreira V, Canhoto C, Escalada A, Guerrero-Bolaño F, Wantzen KM, Boyero L (2015) A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100:1–12

    Article  Google Scholar 

  • Jacobsen D, Cressa C, Mathooko JM, Dudgeon D (2008) Macroinvertebrates: composition, life histories and production. In: Tropical streams ecology. Academic, New York, pp 65–105

    Chapter  Google Scholar 

  • LeRoy CJ, Marks JC (2006) Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51:605–617

    Article  Google Scholar 

  • Lopretto EC, Tell G (1995) Ecosistemas de aguas continentales. Metodología para su estudio. Ediciones Sur, La Plata

    Google Scholar 

  • Masese FO, Kitaka N, Kipkemboi J, Gettel GM, Irvine K, McClain ME (2014) Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshwater Science 33:435–450

    Article  Google Scholar 

  • Mathuriau C, Chauvet E (2002) Breakdown of leaf litter in a neotropical stream. Journal of the North American Benthological Society 21:384–396

    Article  Google Scholar 

  • Melack JM, Forsberg BR (2001) Biogeochemistry of Amazon floodplain lakes and associated wetlands. In: Mc Clain ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon Basin. Oxford University Press, Oxford, pp 235–274

    Google Scholar 

  • Merritt RW, Cummins KW (eds) (1996) An introduction to the aquatic insects of North America, 3rd edn. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands. Van Nostrand Reinhold, New York

    Google Scholar 

  • Neiff JJ, Poi de Neiff A (1990) Litter fall, leaf decomposition and litter colonization of Tessaria integrifolia (Compositae) in the Paraná river floodplain. Hydrobiologia 203:45–52

    Article  Google Scholar 

  • Neiff JJ, Casco SL, Cózar Cabañas A, Poi de Neiff ASG, Úbeda Sánchez B (2011) Vegetation diversity in a large Neotropical wetland during two different climatic scenarios. Biodiversity and Conservation 20:2007–2025

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Pagioro TA, Thomaz SM (1999) Decomposition of Eichhornia azurea from limnologically different environments of the Upper Paraná River floodplain. Hydrobiologia 411:45–51

    Article  Google Scholar 

  • Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshwater Biology 4:343–363

    Article  Google Scholar 

  • Poi de Neiff A, Carignan R (1997) Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiologia 345:185–196

    Article  Google Scholar 

  • Poi de Neiff A, Neiff JJ, Casco SL (2006) Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26:558–566

    Article  Google Scholar 

  • Poi de Neiff A, Galassi ME, Franceschini MC (2009) Invertebrate assemblages associated with leaf litter in three floodplain wetlands of the Paraná River. Wetlands 29:896–906

    Article  Google Scholar 

  • Poi A, Galassi ME (2013) Sistema 4b - Humedales del noroeste de Corrientes. In: Benzaquen L, Blanco D, Bo R, Kandus P, Lingua G, Minotti P, Quintana R, Sverlij S, Vidal L (eds) Inventario de los humedales de Argentina: sistemas de paisajes de humedales del corredor fluvial Paraná Paraguay. Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Buenos Aires, pp 215–222

    Google Scholar 

  • Richardson JS, Shaughnessy Ch R, Harrison PG (2004) Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Archiv für Hydrobiologie 159:309–325

    Article  Google Scholar 

  • Rosemond AD, Pringle CM, Ramírez A (1998) Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwater Biology 39:515–523

    Article  Google Scholar 

  • Rueda-Delgado G, Wantzen KM, Beltran Tolosa M (2006) Leaf-litter decomposition in an Amazonian floodplain stream: effects of seasonal hydrological change. Journal of the North American Benthological Society 25:233–249

    Article  Google Scholar 

  • Saigo M, Marchese M, Montalto L (2009) Hábitos alimentarios de Hyalella curvispina Shoemaker, 1942 (Amphipoda: Grammaridea) en ambientes leníticos de la llanura aluvial del río Paraná Medio. Natura Neotropicalis 40(1,2):43–59

    Google Scholar 

  • Stripari NL, Henry R (2002) The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema River into Jurumirim reservoir (São Paulo, Brazil). Brazilian Journal of Biology 62:293–310

    Article  CAS  Google Scholar 

  • Tomanova S, Goitia E, Helesic J (2006) Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556:251–264

    Article  Google Scholar 

  • Wantzen KM, Wagner R, Suetfeld R, Junk WJ (2002) How do plant-herbivore interactions of trees influence coarse detritus processing by shredders in aquatic ecosystems of different latitudes? Verhandlungen der Internationalen Vereinigung Limnologie 28:815–821

    Google Scholar 

  • Wantzen KM, Yule CM, Mathooko JM, Pringle CM (2008) Organic matter processing in tropical streams. In: Dudgeon D (ed) Tropical stream ecology. Elsevier, London, pp 43–64

    Chapter  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17:567–594

    Article  Google Scholar 

  • Wissinger SA (1999) Ecology of wetland invertebrates: synthesis and applications for conservation and management. In: Batzer DP, Rader RR, Wissinger SA (eds) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, Hoboken, pp 1043–1086

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Alonso Ramírez (Instituto para Estudios de Ecosistemas Tropicales-ITES-Universidad de Puerto Rico) for critically reading this manuscript and offering many helpful comments. We also thank two anonymous reviewers and associates editor for helpful advices that improve the manuscript. This study was supported by PI 2011Q001 from the SGCYT, UNNE, Argentina and PIP CONICET 1122013010029CO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia S. G. Poi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poi, A.S.G., Galassi, M.E., Carnevali, R.P. et al. Leaf Litter and Invertebrate Colonization: the Role of Macroconsumers in a Subtropical Wetland (Corrientes, Argentina). Wetlands 37, 135–143 (2017). https://doi.org/10.1007/s13157-016-0853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0853-5

Keywords

Navigation