Araguaia River Floodplain: Size, Age, and Mineral Composition of a Large Tropical Savanna Wetland

Abstract

The Araguaia River floodplain is a large wetland in the tropical savanna belt (cerrado) in the southern Amazon basin. Studies using multitemporal satellite Landsat 5 TM images with a spatial resolution of 30 m indicate a surface area at maximum flood level of 88,119 km2. During the low-water period, only 3.3 % of the area is covered by water. Flooding is the result of the annual rise in the water level of the Araguaia River and of local rainfall and insufficient drainage during the rainy season. Sedimentology studies have distinguished between an active recent and sub-recent floodplain, which covers ~20 % of the area, and a paleo-floodplain probably several hundreds of thousand years in age. Paleo-floodplain sediments are strongly weathered and marked by the clay mineral association of kaolinite, gibbsite, goethite, and Al-chlorite, predominantly formed from feldspars and micas. The active paleo-floodplain participates in the hydrological cycle but does not receive recent sediments from the river. Higher-lying, not flooded areas (inactive paleo-floodplain) are probably the remnants of paleo-levees, now in an advanced stage of erosion. A hypothesis to explain the genesis of the floodplain is proposed herein.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aquino S, Latrubesse E, Bayer M (2009) Assessment of Wash Load Transport in the Araguaia River (Aruanã Gauge Station), Central Brazil. Latin American Journal of Sedimentology and Basin Analysis 16:119–128

    Google Scholar 

  2. Araújo JB, Carneiro RG (1977) Planície do Araguaia, reconhecimento geológico-geofísico. Petrobrás/RENOR, Belém, 11p, Relatório Técnico

  3. Atterberg A (1912) Die mechanische Bodenanalyse und die Klassifikation der Mineralböden in Schweden. International Mitt f Bodenkunde 2:312–342

    Google Scholar 

  4. BRASIL, Ministério das Minas e Energia, Secretaria Geral (1981) Projeto RADAMBRASIL, Folha SC 22, Tocantins: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Levantamento dos Recursos Naturais, vol 22, MME, Rio de Janeiro

  5. BRASIL, Ministério do Meio Ambiente, IBAMA, ELETRONORTE, PROAVES (2001) Plano de Manejo: Parque Nacional do Araguaia – TO. MMA, Brasília

  6. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing Environment 37:35–46

    Article  Google Scholar 

  7. Dias, AP (2014) Análise Espacial Aplicada à Delimitação de Áreas Úmidas da Planície de Inundação do Médio Araguaia, MSc Thesis, Faculdade de Engenharia Florestal – Universidade Federal de Mato Grosso, 78 p

  8. Furch K, Junk WJ (1997) Physicochemical conditions in floodplains. In: Junk WJ (ed) The central amazon floodplain: ecology of a pulsing system ecological studies, vol 126. Springer, Berlin, pp. 69–108

    Google Scholar 

  9. Hales FW (1981) Anomalias magnéticas de origem profunda na Fossa do Araguaia e no Pantanal: suas implicações geológicas. Mineração e Metalurgia 44(425):24–30

    Google Scholar 

  10. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among south American floodplains. Journal of Geophysical Research 107:LBA 5–1–LBA 5–14. doi:10.1029/2000JD000306

    Google Scholar 

  11. Irion G (1976) Quaternary sediments of the upper Amazon lowlands of Brazil. Biogeographica 7:163–167

    Google Scholar 

  12. Irion G (1981) Holzplantage im Urwald? Naturwissenschaften 68:137–138. doi:10.1007/BF01047251

    Article  Google Scholar 

  13. Irion G (1984) Clay minerals of Amazonian soils. In: Sioli H (ed) The Amazon limnology and landscape ecology of a mighty tropical river and its basin. Dr W Junk Publishers, Dordrecht, pp. 201–214

    Google Scholar 

  14. Irion G (1991) Minerals in rivers. In: Degens E, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers. Wiley, New York, pp. 265–281

    Google Scholar 

  15. Irion G, Kalliola R (2010) Fluvial landscape evolution in lowland Amazonia during the Quaternary. In: Hoorn C, Wesselingh F (eds) Amazonia, landscape and species evolution: a look into the past. Blackwell Publishing, Chichester, pp. 185–197

    Google Scholar 

  16. Junk WJ, Da Silva CJ, Nunes da Cunha C, Wantzen KM (2011) The Pantanal: Ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft, Sofia

    Google Scholar 

  17. Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchick L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Environments 24:5–22

    Article  Google Scholar 

  18. Latrubesse EM (2003) The late quaternary paleohydrology of large South-American fluvial systems. In: Gregory K, Benito G (eds) Palaeohydrology: understanding global change. Wiley, New York, pp. 193–212

    Google Scholar 

  19. Latrubesse EM, Stevaux JC (2002) Geomorphology and environmental aspects of the Araguaia fluvial basin, Brazil. Zeitschrift für Geomorphologie 129:109–127

    Google Scholar 

  20. Latrubesse EM, Amsler ML, Morais RP, Aquino S (2009) The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the south American tropics: the case of the Araguaia River. Geomorphology 113:239–252. doi:10.1016/j.geomorph.2009.03.014

    Article  Google Scholar 

  21. Mather PM (1999) Computer processing of remotely-sensed images: an introduction, 2 edn. Wiley, Chichester 292p

    Google Scholar 

  22. Piedade MTF, Junk WJ, Sousa Jr PT, da Cunha Nunes, C, Schöngart J, Wittmann F, Candotti E, Girard P (2012) As áreas úmidas no âmbito do Código Florestal brasileiro. In: Comitê Brasil em Defesa das Florestas e do Desenvolvimento Sustentável (ed): Código Florestal e a ciência: o que nossos legisladores ainda precisam saber Sumários executivos de estudos científicos sobre impactos do projeto de Código Florestal Comitê Brasil, Brasília, pp 9–17

  23. Pouilly M, Beck SG, Morales M, Ibanez C (2004) Diversidad biológica em la llanura de inundación del Rio Mamoré: Importância ecológica de la dinâmica fluvial. Centro de Ecologia Simon I. Patino, Santa Cruz 383p

    Google Scholar 

  24. Salgado-Laboriau ML (1997) Late quaternary paleoclimate in the savannas of South America. Journal of Quaternary Science 125:371–379

    Article  Google Scholar 

  25. Salgado-Laboriau ML, Casseti V, Ferraz-Vicentini KR, Martin L, Soubies F, Suguio K, Turcq B (1997) Late quaternary vegetational and climatic changes in cerrado and palm swamp from Central Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 128:215–226

    Article  Google Scholar 

  26. Sioli H (1956) Uber Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10:89–109

    Google Scholar 

  27. Valente CR (2007) Controles físicos na evolução das unidades geoambientais da bacia do Rio Araguaia, Brasil Central. Thesis, Federal University of Goias (UFG)

  28. Valente CR, Latrubesse EM (2012) Fluvial archive of peculiar avulsive fluvial patterns in the largest quaternary intracratonic basin of tropical South America: the Bananal Basin, Central-Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 356–357:62–74. doi:10.1016/j.palaeo.2011.10.002

    Article  Google Scholar 

  29. Valente CR, Latrubesse EM, Ferriera LG (2013) Relationships among vegetation, geomorphology and hydrology in the Bananal Island tropical wetlands, Araguaia River basin, Central Brazil. Journal of South American Earth Sciences 46:150–160. doi:10.1016/j.jsames.2012.12.003

    Article  Google Scholar 

  30. Veloso JAV (1997) The seismological observatory of the University of Brasília: accomplishment and prospects. UnB: Brasília

  31. Veloso HP, Japiasu AMS, Goes Filho L, Leite PF (1974) As regiões fitoecológicas, sua natureza e seus recursos econômicos: estudo fitogeográfico da área abrangida pelas folhas SB. 22 Araguaia e SC. 22 Tocantins. In: Brasil, Ministério das Minas e Energia, Secretaria Geral. Projeto RADAMBRASIL, Folha SB.22 Araguaia e parte da Folha SC.22 Tocantins: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Levantamento dos Recursos Naturais, vol 4. MME, Rio de Janeiro, pp 1–119

  32. Villamizar EAR (2013) Química da água para a classificação dos rios e igarapés da bacia amazônica. Thesis, National Institute for Amazonian Research (INPA) and State University of Amazonas (UEA)

Download references

Acknowledgments

This article was conceived and written within the framework of the program of the National Institute for Wetland Research and Technology (INCT-INAU). We gratefully acknowledge the financial assistance of the Brazilian National Council for Scientific and Technological Development (CNPq); the Science Foundation of the State of Mato Grosso (FAPEMAT), and the Federal University of Mato Grosso.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catia Nunes-da-Cunha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irion, G., Nunes, G.M., Nunes-da-Cunha, C. et al. Araguaia River Floodplain: Size, Age, and Mineral Composition of a Large Tropical Savanna Wetland. Wetlands 36, 945–956 (2016). https://doi.org/10.1007/s13157-016-0807-y

Download citation

Keywords

  • Araguaia floodplain
  • Wetland area
  • Mineralogy
  • Hydrochemistry
  • Remote sensing
  • Paleo-floodplain