Skip to main content
Log in

Ant Assemblages and Co-Occurrence Patterns in Cypress-Tupelo Swamp

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

While swamps perform valuable functions in coastal ecosystems, terrestrial invertebrates in these fragile habitats are poorly known. The aims of this study were to (1) uncover the ant diversity and functional groups of Cypress-Tupelo swamps; (2) examine the differences of ant assemblages across vertical strata within trees and across tree species within swamps; and (3) determine if the ant mosaic hypothesis applies to observed patterns of arboreal ant distribution. Pitfall traps were set in tree crowns and on trunks to collect the arboreal ants in three swamps in Louisiana. A total of 21 species from 11 genera were collected. Contrary to our hypothesis, ant diversity on trunks was higher than that in the canopy. A multivariate analysis revealed that the canopy and trunk support distinct ant assemblages, whereas ant species composition was not consistently different among the three dominant tree species- bald cypress, water tupelo, and red maples. In addition, evidence of ant mosaic distribution patterns were not detected. Moreover, we did not find dramatic changes of ant diversity or community structure in trees that were infested with invasive red imported fire ants. Our study provides a benchmark to evaluate the effects of disturbances and conservation management in swamp ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams ES (1994) Territory defense by the ant Azteca trigona - maintenance of an arboreal ant mosaic. Oecologia 97(2):202–208. doi:10.1007/bf00323150

    Article  Google Scholar 

  • Agosti D, Majer J, Alonso LE, Schultz TR (2000) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC

  • Andersen AN (1997) Functional groups and patterns of organization in north American ant communities: a comparison with Australia. J Biogeogr 24(4):433–460. doi:10.1111/j.1365-2699.1997.00137.x

    Article  Google Scholar 

  • Andersen AN, Majer JD (2004) Ants show the way Down Under: invertebrates as bioindicators in land management. Front Ecol Environ 2(6):291–298

    Article  Google Scholar 

  • Andersen AN, Penman TD, Debas N, Houadria M (2009) Ant community responses to experimental fire and logging in a eucalypt forest of south-eastern Australia. For Ecol Manag 258(2):188–197. doi:10.1016/j.foreco.2009.04.004

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26(1):32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  • Blüthgen N, Stork NE (2007) Ant mosaics in a tropical rainforest in Australia and elsewhere: A critical review. Austral Ecology 32(1):93–104. doi:10.1111/j.1442-9993.2007.01744.x

    Article  Google Scholar 

  • Blüthgen N, Stork NE, Fiedler K (2004) Bottom-up control and co-occurrence in complex communities: honeydew and nectar determine a rainforest ant mosaic. Oikos 106(2):344–358. doi:10.1111/j.0030-1299.2004.12687.x

    Article  Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2007) The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia. Biodivers Conserv 16(8):2429–2444. doi:10.1007/s10531-007-9196-0

    Article  Google Scholar 

  • Bruhl CA, Gunsalam G, Linsenmair KE (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14:285–297. doi:10.1017/s0266467498000224

    Article  Google Scholar 

  • Campos RI, Vasconcelos HL, Ribeiro SP, Neves FS, Soares JP (2006) Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29 (3):442–450. doi:10.1111/j.2006.0906-7590.04520.x

  • Campos RI, Vasconcelos HL, Andersen AN, Frizzo TLM, Spena KC (2011) Multi-scale ant diversity in savanna woodlands: an intercontinental comparison. Austral Ecology 36(8):983–992. doi:10.1111/j.1442-9993.2011.02255.x

    Article  Google Scholar 

  • Chen X, MacGown JA, Adams BJ, Parys KA, Strecker RM, Hooper-Bui L (2012) First Record of Pyramica epinotalis (Hymenoptera: Formicidae) for the United States. Psyche 2012:7. doi:10.1155/2012/850893

  • Chen X, Adams B, Bergeron C, Sabo A, Hooper-Bui L (2015) Ant community structure and response to disturbances on coastal dunes of Gulf of Mexico. J Insect Conserv 19(1):1–13. doi:10.1007/s10841-014-9722-9

    Article  Google Scholar 

  • Childress ES, Koning AA (2013) Polydomous Crematogaster pilosa (Hymenoptera: Formicidae) colonies prefer highly connected habitats in a tidal salt marsh. Fla Entomol 96(1):235–237

    Article  Google Scholar 

  • Clarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014). Change in marine communities: An approach to statistical analysis and interpretation, 3rd edition. PRIMER-E, Plymouth, 260 pp

  • Colby D, Prowell D (2006) Ants (Hymenoptera: Formicidae) in wet longleaf pine savannas in Louisiana. The Florida Entomologist 89(2):266–269

    Article  Google Scholar 

  • Colwell, RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates

  • Conner WH, Mihalia L, Wolfe J (2002) Tree community structure and changes from 1987 to 1999 in three Louisiana and three South Carolina forested wetlands. Wetlands 22(1):58–70. doi:10.1672/0277-5212(2002)022[0058:tcsacf]2.0.co;2

    Article  Google Scholar 

  • Conner WH, Duberstein JA, JW D Jr, Hutchinson S (2014) Impacts of Changing Hydrology and Hurricanes on Forest Structure and Growth Along a Flooding/Elevation Gradient in a South Louisiana Forested Wetland from 1986 to 2009. Wetlands 34(4):803–814. doi:10.1007/s13157-014-0543-0

    Article  Google Scholar 

  • Dash ST (2003) Species diversity and biogeography of ants (Hymenoptera: Formicidae) in Louisiana, with notes on their ecology. Louisiana State University, Thesis

    Google Scholar 

  • Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300 (5621):969–972. doi:10.1126/science.1082074

  • Davis LV, Gray IE (1966) Zonal and seasonal distribution of insects in North Carolina salt marshes. Ecol Monogr 36(3):275–295

    Article  Google Scholar 

  • De la Mora A, Murnen CJ, Philpott SM (2013) Local and landscape drivers of biodiversity of four groups of ants in coffee landscapes. Biodivers Conserv 22 (4):871–888. doi:10.1007/s10531-013-0454-z

  • Dejean A, Akoa A, Djietolordon C, Lenoir A (1994) Mosaic ant territories in an African secondary rain-forest (Hymenoptera, Formicidae). Sociobiology 23(3):275–292

    Google Scholar 

  • Dolek M, Freese-Hager A, Bussler H, Floren A, Liegl A, Schmidl J (2009) Ants on oaks: effects of forest structure on species composition. J Insect Conserv 13 (4):367–375. doi:10.1007/s10841-008-9181-2

  • Doyle TW, Keeland BD, Gorham LE, Johnson DJ (1995) Structural Impact of Hurricane Andrew on the Forested Wetlands of the Atchafalaya Basin in South Louisiana. J Coast Res: 354–364. doi:10.2307/25736020

  • Effler RS, Goyer RA (2006) Baldcypress and water tupelo sapling response to multiple stress agents and reforestation implications for Louisiana swamps. For Ecol Manag 226 (1–3):330–340. doi:10.1016/j.foreco.2006.02.011

  • Ewel KC, Odum HT (1984). Cypress swamps. University Presses of Florida, Gainesville

  • Faulkner SP, Bhattarai P, Allen Y, Barras J, Constant G (2009) Identifying baldcypress-water tupelo regeneration classes in forested wetlands of the Atchafalaya basin, Louisiana. Wetlands 29(3):809–817

    Article  Google Scholar 

  • Fayle TM, Turner EC, Foster WA (2013) Ant mosaics occur in SE Asian oil palm plantation but not rain forest and are influenced by the presence of nest-sites and non-native species. Ecography 36 (9):1051–1057. doi:10.1111/j.1600-0587.2012.00192.x

  • Floren A, Linsenmair KE (2000) Do ant mosaics exist in pristine lowland rain forests? Oecologia 123 (1):129–137. doi:10.1007/s004420050998

  • Floren A, Linsenmair KE (2001) The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecol 153 (1–2):153–167. doi:10.1023/a:1017510312462

  • Floren A, Linsenmair KE (2005) The importance of primary tropical rain forest for species diversity: An investigation using arboreal ants as an example. Ecosystems 8 (5):559–567. doi:10.1007/s10021-002-0272-8

  • Floren A, Freking A, Biehl M, Linsenmair KE (2001) Anthropogenic disturbance changes the structure of arboreal tropical ant communities. Ecography 24 (5):547–554. doi:10.1034/j.1600-0587.2001.d01-210.x

  • Floren A, Biun A, Linsenmair KE (2002) Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131 (1):137–144. doi:10.1007/s00442-002-0874-z

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7(9):1221–1244. doi:10.1023/a:1008891901953

    Article  Google Scholar 

  • Fonseca CR, Benson WW (2003) Ontogenetic succession in Amazonian ant trees. Oikos 102 (2):407–412

  • Gibb H (2011) Experimental evidence for mediation of competition by habitat succession. Ecology 92(10):1871–1878

    Article  CAS  PubMed  Google Scholar 

  • Gooding G, Langford JR (2004) Characteristics of tree roosts of Rafinesque's big-eared bat and southeastern bat in northeastern Louisiana. Southwestern Naturalist 49 (1):61–67. doi:10.1894/0038-4909(2004)049 < 0061:cotror > 2.0.co;2

  • Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81(9):2606–2621. doi:10.1890/0012-9658(2000)081[2606:nmaosc]2.0.co;2

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM, Dunn RR, Sanders NJ (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for Myrmecologists. Myrmecological News 15:13–19

  • Hahn DA, Wheeler DE (2002) Seasonal foraging activity and bait preferences of ants on Barro Colorado Island, Panama. Biotropica 34 (3):348–356. doi:10.1111/j.1744-7429.2002.tb00548.x

  • Hashimoto Y, Morimoto Y, Widodo ES, Mohamed M (2006) Vertical distribution pattern of ants in a bornean tropical rainforest (Hymenoptera : Formicidae). Sociobiology 47 (3):697–710

  • Hashimoto Y, Morimoto Y, Widodo ES, Mohamed M, Fellowes JR (2010) Vertical Habitat Use and Foraging Activities of Arboreal and Ground Ants (Hymenoptera: Formicidae) in a Bornean Tropical Rainforest. Sociobiology 56 (2):435–448

  • Hess CA, James FC (1998) Diet of the red-cockaded woodpecker in the Apalachicola National Forest. J Wildl Manag 62 (2):509–517. doi:10.2307/3802324

  • Hoeppner SS, Shaffer GP, Perkins TE (2008) Through droughts and hurricanes: Tree mortality, forest structure, and biomass production in a coastal swamp targeted for restoration in the Mississippi River Deltaic Plain. For Ecol Manag 256(5):937–948. doi:10.1016/j.foreco.2008.05.040

    Article  Google Scholar 

  • Hoffmann BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecology 28(4):444–464. doi:10.1046/j.1442-9993.2003.01301.x

    Article  Google Scholar 

  • Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science 210 (4471):732–739. doi:10.1126/science.210.4471.732

  • Hölldobler B, Wilson EO (1990) The Ants. The Belknap Press of Harvard University Press Cambridge, Cambridge

  • Jackson DA (1984) Ant distribution patterns in a cameroonian cocoa plantation - investigation of the ant mosaic hypothesis. Oecologia 62 (3):318–324. doi:10.1007/bf00384263

  • Janda M, Konecna M (2011) Canopy assemblages of ants in a New Guinea rain forest. J Trop Ecol 27:83–91. doi:10.1017/s0266467410000623

  • Jones SR, Phillips SA (1990) Resource collecting abilities of Solenopsis invicta (Hymenoptera, Formicidae) compared with those of 3 sympatric Texas ants. Southwest Nat 35(4):416–422. doi:10.2307/3672039

    Article  Google Scholar 

  • Kaspari M (2000) Do imported fire ants impact canopy arthropods? Evidence from simple arboreal pitfall traps. Southwest Nat 45(2):118–122. doi:10.2307/3672451

    Article  Google Scholar 

  • Kindt R, Van Damme P, Simons AJ (2006) Tree diversity in western Kenya: using profiles to characterise richness and evenness. Biodivers Conserv 15(4):1253–1270. doi:10.1007/s10531-005-0772-x

    Article  Google Scholar 

  • King JR, Tschinkel WR (2006) Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J Anim Ecol 75(6):1370–1378. doi:10.1111/j.1365-2656.2006.01161.x

    Article  PubMed  Google Scholar 

  • King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc Natl Acad Sci U S A 105(51):20339–20343. doi:10.1073/pnas.0809423105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King JR, Tschinkel WR (2013) Experimental evidence for weak effects of fire ants in a naturally invaded pine-savanna ecosystem in north Florida. Ecological Entomology 38(1):68–75. doi:10.1111/j.1365-2311.2012.01405.x

    Article  Google Scholar 

  • Klimes P, Idigel C, Rimandai M, Fayle TM, Janda M, Weiblen GD, Novotny V (2012) Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology 81 (5):1103–1112. doi:10.1111/j.1365-2656.2012.02002.x

  • Koch H, Corcoran C, Jonker M (2011) Honeydew collecting in Malagasy stingless bees (Hymenoptera: Apidae: Meliponini) and observations on competition with invasive ants. African Entomology 19(1):36–41

    Article  Google Scholar 

  • Leal IR, Bieber AGD, Tabarelli M, Andersen AN (2010) Biodiversity surrogacy: indicator taxa as predictors of total species richness in Brazilian Atlantic forest and Caatinga. Biodivers Conserv 19 (12):3347–3360. doi:10.1007/s10531-010-9896-8

  • LeBrun EG, Plowes RM, Gilbert LE (2012) Imported fire ants near the edge of their range: disturbance and moisture determine prevalence and impact of an invasive social insect. Journal of Animal Ecology 81 (4):884–895. doi:10.1111/j.1365-2656.2012.01954.x

  • Lessard J-P, Fordyce JA, Gotelli NJ, Sanders NJ (2009) Invasive ants alter the phylogenetic structure of ant communities. Ecology 90 (10):2664–2669. doi:10.1890/09-0503.1

  • Leston D (1973) The Ant Mosaic - Tropical Tree Crops and the Limiting of Pests and Diseases. PANS Pest Articles & News Summaries 19 (3):311–341. doi:10.1080/09670877309412778

  • Lövei, GL (2005) Generalised entropy indices have a long history in ecology – a comment. Comput Econ 6: 245– 247

  • Lowery GH (1974) The mammals of Louisiana and its adjacent waters. Louisiana State University Press, Baton Rouge

    Google Scholar 

  • Lubertazzi D, Tschinkel W (2003) Ant community change across a ground vegetation gradient in north Florida's longleaf pine flatwoods. J Insect Sci (Online) 3:21–21

  • MacGown JA, Brown RL (2006) Observations on the high diversity of native ant species coexisting with imported fire ants at a microspatial scale in Mississippi. Southeast Nat 5(4):573–586. doi:10.1656/1528-7092(2006)5[573:oothdo]2.0.co;2

    Article  Google Scholar 

  • McCoy ED, Rey JR (1987) Terrestrial arthropods of northwest Florida salt marshes - Hymenoptera (Insecta). Fla Entomol 70 (1):90–97. doi:10.2307/3495094

  • Menzel TO, Nebeker TE (2008) Distribution of hybrid imported fire ants (Hymenoptera: Formicidae) and some native ant species in relation to local environmental conditions and interspecific competition in Mississippi forests. Ann Entomol Soc Am 101(1):119–127. doi:10.1603/0013-8746(2008)101[119:dohifa]2.0.co;2

    Article  Google Scholar 

  • Mestre L, Pinol J, Barrientos JA, Cama A, Espadaler X (2012) Effects of ant competition and bird predation on the spider assemblage of a citrus grove. Basic and Applied Ecology 13 (4):355–362. doi:10.1016/j.baae.2012.04.002

  • Mitsch WJ, Gosselink JG (2007) Wetlands Wiley, New Jersey

  • Neves FS, Queiroz-Dantas KS, da Rocha WD, Delabie JHC (2013) Ants of three adjacent habitats of a transition region between the Cerrado and Caatinga biomes: the effects of heterogeneity and variation in canopy cover. Neotropical Entomology 42(3):258–268. doi:10.1007/s13744-013-0123-7

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MG (2000) Distribution of the ant (hymenoptera: Formicidae) fauna in the canopy of the mangrove tree Sonneratia alba J. Smith in northern Australia. Australian Journal of Entomology 39:275–279. doi:10.1046/j.1440-6055.2000.00192.x

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996a) Designing a cost-effective invertebrate survey: A test of methods for rapid assessment of biodiversity. Ecol Appl 6(2):594–607. doi:10.2307/2269394

    Article  Google Scholar 

  • Oliver I, Beattie AJ (1996b) Invertebrate morphospecies as surrogates for species: A case study. Conserv Biol 10 (1):99–109. doi:10.1046/j.1523-1739.1996.10010099.x

  • Parys KA, Gimmel ML, Johnson SJ (2013) Checklist of Insects Associated with Salvinia minima Baker in Louisiana, USA. Chem List 9(6):1488–1495

    Article  Google Scholar 

  • Perry DR (1978) Method of access into crowns of emergent and canopy trees. Biotropica 10(2):155–157. doi:10.2307/2388019

    Article  Google Scholar 

  • Pezeshki SR, Delaune RD, Patrick WH (1987) Response of baldcypress (Taxodium distichum L. var.Distichum) To increases in flooding salinity in Louisiana’s Mississippi River deltaic plain. Wetlands 7 (1):1–10. doi:10.1007/BF03160798

  • Pfeiffer M, Tuck HC, Lay TC (2008) Exploring arboreal ant community composition and co-occurrence patterns in plantations of oil palm Elaeis guineensis in Borneo and Peninsular Malaysia. Ecography 31 (1):21–32. doi:10.1111/j.2007.0906-7590.05172.x

  • Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology 31(4):369–377. doi:10.1111/j.1365-2311.2006.00793.x

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language andenvironment for statistical computing. Version 2.15.0. RFoundation for Statistical Computing,Vienna.

  • Rao A, Vinson SB (2004) Ability of resident ants to destruct small colonies of Solenopsis invicta (Hymenoptera: Formicidae). Environ Entomol 33(3):587–598

    Article  Google Scholar 

  • Rao A, Vinson SB (2009) The Initial Behavioral Sequences and Strategies of Various Ant Species During Individual Interactions With Solenopsis invicta. Ann Entomol Soc Am 102(4):702–712. doi:10.1603/008.102.0415

    Article  Google Scholar 

  • Ribas CR, Schoereder JH (2002) Are all ant mosaics caused by competition? Oecologia 131 (4):606–611. doi:10.1007/s00442-002-0912-x

  • Ribas CR, Schoereder JH (2007) Ant communities, environmental characteristics and their implications for conservation in the Brazilian Pantanal. Biodivers Conserv 16(5):1511–1520. doi:10.1007/s10531-006-9041-x

    Article  Google Scholar 

  • Ribas CR, Schoereder JH, Pic M, Soares SM (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecology 28(3):305–314. doi:10.1046/j.1442-9993.2003.01290.x

    Article  Google Scholar 

  • Ribeiro SP, Espirito Santo NB, Delabie JHC, Majer JD (2013) Competition, resources and the ant (Hymenoptera: Formicidae) Mosaic: A comparison of upper and lower canopy. Myrmecological News 18:113–120

  • Sanders NJ, Gotelli NJ, Heller NE, Gordon DM (2003) Community disassembly by an invasive species. Proc Natl Acad Sci U S A 100(5):2474–2477. doi:10.1073/pnas.0437913100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders NJ, Crutsinger GM, Dunn RR, Majer JD, Delabie JHC (2007) An ant mosaic revisited: Dominant ant species disassemble arboreal ant communities but co-occur randomly. Biotropica 39(3):422–427. doi:10.1111/j.1744-7429.2007.00263.x

    Article  Google Scholar 

  • Schonberg LA, Longino JT, Nadkarni NM, Yanoviak SP, Gering JC (2004) Arboreal ant species richness in primary forest, secondary forest, and pasture habitats of a tropical montane landscape. Biotropica 36(3):402–409. doi:10.1111/j.1744-7429.2004.tb00333.x

    Article  Google Scholar 

  • Schulz A, Wagner T (2002) Influence of forest type and tree species on canopy ants (Hymenoptera : Formicidae) in Budongo Forest, Uganda. Oecologia 133(2):224–232. doi:10.1007/s00442-002-1010-9

    Article  Google Scholar 

  • Shaffer GP, Wood WB, Hoeppner SS, Perkins TE, Zoller J, Kandalepas D (2009) Degradation of Baldcypress–Water Tupelo Swamp to Marsh and Open Water in Southeastern Louisiana, U.S.A.: An irreversible trajectory? J Coast Res:152–165. doi:10.2112/SI54-006.1

  • Sklar F (1985) Seasonality and community structure of the backswamp invertebrates in a Louisiana cypress-tupelo wetland. Wetlands 5(1):69–86. doi:10.1007/BF03160788

    Article  Google Scholar 

  • Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85(1):74–79. doi:10.1007/bf00317345

    Article  Google Scholar 

  • Tagwireyi P, Sullivan SMP (2015) Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA. PLoS One 10(4):e0124807. doi:10.1371/journal.pone.0124807

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka HO, Itioka T (2011) Ants inhabiting Myrmecophytic ferns regulate the distribution of lianas on emergent trees in a Bornean tropical rainforest. Biol Lett 7(5):706–709. doi:10.1098/rsbl.2011.0242

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka HO, Yamane S, Itioka T (2010) Within-tree distribution of nest sites and foraging areas of ants on canopy trees in a tropical rainforest in Borneo. Popul Ecol 52(1):147–157. doi:10.1007/s10144-009-0172-2

    Article  Google Scholar 

  • Tothmeresz B (1995) Comparison of different methods for diversity ordering. J Veg Sci 6(2):283–290. doi:10.2307/3236223

    Article  Google Scholar 

  • Trager JC (2013) Global revision of the dulotic ant genus Polyergus (hymenoptera: Formicidae, Formicinae, Formicini). Zootaxa 3722 (4):501–548

  • Tschinkel WR (2002) The natural history of the arboreal ant, Crematogaster ashmeadi. J Insect Sci (Online) 2:12–12

  • Tschinkel WR, Hess CA (1999) Arboreal ant community of a pine forest in northern Florida. Ann Entomol Soc Am 92(1):63–70

    Article  Google Scholar 

  • Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: If, when, and how. Biol Conserv 132 (2):166–182. doi:10.1016/j.biocon.2006.03.022

  • Vasconcelos HL, Vilhena JMS (2006) Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: A comparison of forests and savannas. Biotropica 38(1):100–106. doi:10.1111/j.1744-7429.2006.00113.x

    Google Scholar 

  • Ward PS (1985) The Nearctic species of the genus Pseudomyrmex (Hymenoptera: Formicidae). Quaestiones Entomologicae 21:209–246

    Google Scholar 

  • Watt AD, Stork NE, Bolton B (2002) The diversity and abundance of ants in relation to forest disturbance and plantation establishment in southern Cameroon. J Appl Ecol 39(1):18–30. doi:10.1046/j.1365-2664.2002.00699.x

    Article  Google Scholar 

  • White TH, Bowman JL, Jacobson HA, Leopold BD, Smith WP (2001) Forest management and female black bear denning. J Wildl Manag 65(1):34–40. doi:10.2307/3803274

    Article  Google Scholar 

  • Widodo ES, Naito T, Mohamed M, Hashimoto Y (2004) Effects of selective logging on the arboreal ants of a Bornean rainforest. Entomological Science 7(4):341–349. doi:10.1111/j.1479-8298.2004.00082.x

    Article  Google Scholar 

  • Wilson E (1976) The organization of colony defense in the ant Pheidole dentata Mayr (hymenoptera: Formicidae). Behav Ecol Sociobiol 1(1):63–81. doi:10.1007/BF00299953

    Article  Google Scholar 

  • Wilson EO (1987) The arboreal ant fauna of Peruvian amazon forests - a 1st assessment. Biotropica 19 (3):245–251. doi:10.2307/2388342

  • Wojcik DP, Allen CR , Brenner RJ, Forys EA , Jouvenaz DP , Lutz RS (2001) Red Imported Fire Ants: Impact on Biodiversity. Am Entomol 47 (1): 16–23. doi: 10.1093/ae/47.1.16

  • Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89(2):259–266. doi:10.1034/j.1600-0706.2000.890206.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Rachel Strecker for her technical help. We thank Joe MacGown (Department of Entomology and Plant Pathology, Mississippi State University) for confirmation of the identity of ant species. Thanks to Julie Whitbeck, Christian Winslow, Jean Lafitte National Historical Park and Preserve, Maurepas Swamp Wildlife Management Area, and Louisiana Department of Wildlife and Fisheries for facilitating work at those locations. We also thank Wokil Bam, Brooke Henson, and Stacy Peterson for technical assistance. Partial funding for this project was provided by a grant from the Northern Gulf Institute to LMHB; however, the funding source had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Hooper-Bùi.

Appendix

Appendix

Fig. 5
figure 5

Photos of (a) higher root area of some trees in Jean Lafitte, (b) Pitfall traps used to collect ants in trees: 1) cup trap, 2) bottle trap, and 3) trunk trap

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Adams, B., Sabo, A. et al. Ant Assemblages and Co-Occurrence Patterns in Cypress-Tupelo Swamp. Wetlands 36, 849–861 (2016). https://doi.org/10.1007/s13157-016-0795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0795-y

Keywords

Navigation