Skip to main content

Advertisement

Log in

Greenhouse Gas Fluxes of a Shallow Lake in South-Central North Dakota, USA

  • Short Communication
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Greenhouse gas (GHG) fluxes of aquatic ecosystems in the northern Great Plains of the U.S. represent a significant data gap. Consequently, a 3-year study was conducted in south-central North Dakota, USA, to provide an initial estimate of GHG fluxes from a large, shallow lake. Mean GHG fluxes were 0.02 g carbon dioxide (CO2) m−2 h−1, 0.0009 g methane (CH4) m−2 h−1, and 0.0005 mg nitrous oxide (N2O) m−2 h−1. Fluxes of CO2 and CH4 displayed temporal and spatial variability which is characteristic of aquatic ecosystems, while fluxes of N2O were consistently low throughout the study. Comparisons between results of this study and published values suggest that mean daily fluxes of CO2, CH4, and N2O from Long Lake were low, particularly when compared to the well-studied prairie pothole wetlands of the region. Similarly, cumulative seasonal CH4 fluxes, which ranged from 2.68–7.58 g CH4 m−2, were relatively low compared to other wetland systems of North America. The observed variability among aquatic ecosystems underscores the need for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Algesten G, Sobek S, Bergström A-K, Ågren A, Tranvik LJ, Jansson M (2003) Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol 10:141–147. doi:10.1046/j.1529-8817.2003.00721.x

    Article  Google Scholar 

  • Badiou P, McDougal R, Pennock D, Clark B (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetl Ecol Manag 19:237–256. doi:10.1007/s11273-011-9214-6

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009. doi:10.1029/2004GB002238

    Article  Google Scholar 

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50. doi:10.1126/science.1196808

    Article  CAS  PubMed  Google Scholar 

  • Bedard-Haughn A, Matson AL, Pennock DJ (2006) Land use effects on gross nitrogen mineralization, nitrification, and N2O emissions in ephemeral wetlands. Soil Biol Biochem 38:3398–3406. doi:10.1016/j.soilbio.2006.05.010

    Article  CAS  Google Scholar 

  • Bernal B, Mitsch WJ (2012) Comparing carbon sequestration in temperate freshwater wetland communities. Glob Chang Biol 18:1636–1647. doi:10.1111/j.1365-2486.2011.02619.x

    Article  Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of north American wetlands. Wetlands 26:889–916

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives form local to global scales. Glob Chang Biol 19:1325–1346. doi:10.1111/gcb.12131

    Article  PubMed  Google Scholar 

  • Cao M, Gregson K, Marshall S (1998) Global methane emission from wetlands and its sensitivity to climate change. Atmos Environ 32:3293–3299

    Article  CAS  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, et al. (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. doi:10.1007/s10021-005-0105-7

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, et al. (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi:10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Coolman RM, Robarge WP (1995) Sampling nitrous oxide emissions from humid tropical ecosystems. J Biogeogr 22:381–391

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildlife Service report FWS/OBS-79/31. http://www.fws.gov/wetlands/Documents/classwet/index.html. Accessed 1 July 2015

  • Creed IF, Miller J, Aldred D, Adams JK, Spitale S, Bourbonniere RA (2013) Hydrologic profiling for greenhouse gas effluxes from natural grasslands in the prairie pothole region of Canada. J Geophys Res Biogeosci 118:680–697. doi:10.1002/jgrg.20050

    Article  CAS  Google Scholar 

  • Dahl TE (2006) Status and trends of wetlands in the conterminous United States 1998 to 2004. U.S. Fish and Wildlife Service, Washington, DC. Available via USFWS. http://www.fws.gov/wetlands/Status-And-Trends/index.html. Accessed 1 July 2015

  • Dahl TE (2014) Status and trends of prairie wetlands in the United States 1997 to 2009. U.S. Fish and Wildlife Service, Washington, DC. Available via USFWS. http://www.fws.gov/wetlands/Status-And-Trends/index.html. Accessed 1 July2015

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667–680

    Article  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, et al. (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, et al. (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Euliss NH Jr, LaBaugh JW, Fredrickson LH, Mushet DM, Laubhan MK, Swanson GA, Winter TC, Rosenberry DO, Nelson RD (2004) The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24:448–458

    Article  Google Scholar 

  • Euliss NH Jr, Gleason RA, Olness A, et al. (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Sci Total Environ 361:179–188. doi:10.1016/j.scitotenv.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  • Finocchiaro R, Tangen B, Gleason R (2014) Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. prairie pothole Ecoregion. Wetl Ecol Manag 22:305–324. doi:10.1007/s11273-013-9331-5

    Article  CAS  Google Scholar 

  • Fritz SC (1990) Twentieth-century salinity and water-level fluctuations in devils Lake, North Dakota: test of a diatom-based transfer function. Limnol Oceanogr 35:1771–1781

    Article  Google Scholar 

  • Gleason RA, Tangen BA, Browne BA, Euliss NH Jr (2009) Greenhouse gas flux from cropland and restored wetlands in the prairie pothole region. Soil Biol Biochem 41:2501–2507. doi:10.1016/j.soilbio.2009.09.008

    Article  CAS  Google Scholar 

  • Harris SW, Marshall WH (1963) Ecology of water-level manipulations on a northern marsh. Ecology 44:331–343

    Article  Google Scholar 

  • Hernandez ME, Mitsch WJ (2006) Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands 26:862–877

    Article  Google Scholar 

  • Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124. doi:10.1007/s13157-009-0003-4

    Article  Google Scholar 

  • LaBaugh JW (1989) Chemical characteristics of water in northern prairie wetlands. In: van der Valk A (ed) Northern prairie wetlands. Iowa State University Press, Ames, pp. 56–90

    Google Scholar 

  • Laird KR, Fritz SC, Grimm EC, Mueller PG (1996) Century-scale Paleoclimatic reconstruction from moon Lake, a Closed-Basin Lake in the northern Great Plains. Limnol Oceanogr 41:890–902

    Article  Google Scholar 

  • Laubhan MK, Gleason RA, Knutsen GA, Laubhan RA, Euliss NH Jr (2006) A preliminary biological assessment of Long Lake National Wildlife Refuge Complex, North Dakota. U.S. Fish and Wildlife Service, Biological Technical Publication, BTP R6006–2006, Washington, DC. Available via USFWS. http://digitalmedia.fws.gov/cdm/ref/collection/document/id/1517. Accessed 1 July 2015

  • Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12:1103–1117. doi:10.1111/j.1461-0248.2009.01351.x

    Article  CAS  PubMed  Google Scholar 

  • Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell, Cambridge, pp. 14–51

    Google Scholar 

  • Merbach W, Augustin J, Kalettka T, Jacob HJ (1996) Nitrous oxide and methane emissions from riparian areas of ponded depressions of Northeast Germany. Angew Bot 70:134–136

    CAS  Google Scholar 

  • Milliken GA, Johnson DE (2009) Analysis of messy data volume 1: designed experiments, 2nd edn. Chapman & Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, et al. (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597. doi:10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–1013. doi:10.1007/s10021-015-9879-4

    Article  Google Scholar 

  • Pennock D, Yates T, Bedard-Haughn A, Phipps K, Farrell R, McDougal R (2010) Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian prairie pothole region. Geoderma 155:308–319. doi:10.1016/j.geoderma.2009.12.015

    Article  CAS  Google Scholar 

  • Phillips R, Beeri O (2008) The role of hydropedologic vegetation zones in greenhouse gas emissions for agricultural wetland landscapes. Catena 72:386–394. doi:10.1016/j.catena.2007.07.007

    Article  Google Scholar 

  • Podgrajsek E, Sahlée E, Rutgersson A (2014) Diurnal cycle of lake methane flux. J Geophys Res Biogeosci 119:236–248. doi:10.1002/2013JG002327

    Article  CAS  Google Scholar 

  • Priemé A (1994) Production and emission of methane in a brackish and a freshwater wetland. Soil Biol Biochem 26:7–18

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, et al. (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi:10.1038/nature12760

    Article  CAS  PubMed  Google Scholar 

  • Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A. Can J Fish Aquat Sci 56:265–274

    Article  Google Scholar 

  • Ryberg KR (2006) Cluster analysis of water-quality data for Lake Sakakawea, Audubon Lake, and McClusky Canal, central North Dakota, 1990–2003. U.S. Geological Survey Scientific Investigations Report 2006–5202. Available via USGS. http://pubs.usgs.gov/sir/2006/5202/. Accessed 1 July 2015

  • SAS Institute (2014) SAS/STAT 9.4 user’s guide. SAS Institute, Inc, Cary, North Carolina

    Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Smith LK, Lewis WM Jr (1992) Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. Glob Biogeochem Cycles 6:323–338

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.1046/j.1365-2389.2003.00567.x

    Article  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Article  Google Scholar 

  • Stewart RE, Kantrud HA (1971) Classification of natural ponds and lakes in the glaciated prairie region. U.S. Fish and Wildlife Service, Bureau of Sport Fisheries and Wildlife, Publication 92, Washington, DC

  • Striegl RG, Michmerhuizen CM (1998) Hydrologic influence on methane and carbon dioxide dynamics at two north-Central Minnesota lakes. Limnol Oceanogr 43:1519–1529

    Article  CAS  Google Scholar 

  • Swanson GA, Winter TC, Adomaitis VA, LaBaugh JW (1988) Chemical characteristics of prairie lakes in south-central North Dakota–their potential for influencing use by fish and wildlife. U.S. Fish and Wildlife Service, Fish and Wildlife Technical Report 18, Washington, DC

  • Tangen BA, Finocchiaro RG, Gleason RA, Rabenberg MJ, Dahl CF, Ell MJ (2013a) Assessment of water-quality data from Long Lake National Wildlife Refuge, North Dakota–2008 through 2012. U.S. Geological Survey Scientific Investigations Report 2013–5183. doi:10.3133/sir20135183

  • Tangen BA, Gleason RA, Stamm JF (2013b) A model for evaluating effects of climate, water availability, and water management on wetland impoundments—A case study on Bowdoin, Long Lake, and Sand Lake National Wildlife Refuges. U.S. Geological Survey Scientific Investigations Report 2013–5114. Available via USGS. http://pubs.usgs.gov/sir/2013/5114/. Accessed 1 July 2015

  • Tangen BA, Laubhan MK, Gleason RA (2014) Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota. U.S. Geological Survey Scientific Investigations Report 2014–5018. Available via USGS. doi:10.3133/sir20145018. Accessed 1 July 2015

  • Tangen BA, Finocchiaro RG, Gleason RA (2015) Effects of land use on greenhouse gas fluxes and soil properties of wetland catchments in the prairie pothole region of North America. Sci Total Environ 533:391–409. doi:10.1016/j.scitotenv.2015.06.148

    Article  CAS  PubMed  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, et al. (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Walter KM, Smith LC, Chapin FS III (2007) Methane bubbling from northern lakes: present and future contributions to the global methane budget. Phil Trans R Soc A 365:1657–1676. doi:10.1098/rsta.2007.2036

    Article  CAS  PubMed  Google Scholar 

  • Wetzel RG (2001) Limnology, lake and river ecosystems, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94

    Article  CAS  Google Scholar 

  • Whiting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53B:521–528

    Article  CAS  Google Scholar 

  • Yu K, Faulkner SP, Baldwin MJ (2008) Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration. Glob Chang Biol 14:798–812. doi:10.1111/j.1365-2486.2008.01545.x

    Article  Google Scholar 

  • Zhu Z (ed) (2010) A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios. U.S. Geological Survey Scientific Investigations Report 2010–5233. Available via USGS. http://pubs.usgs.gov/sir/2010/5233/. Accessed 1 July 2015

  • Zhu Z (ed) (2011) Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States. U.S. Geological Survey Professional Paper 1787. Available via USGS http://pubs.usgs.gov/pp/1787/. Accessed 1 July 2015

  • Zhu Z, Reed, BC (eds) (2012) Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of the Western United States. U.S. Geological Survey Professional Paper 1797. Available via USGS. http://pubs.usgs.gov/pp/1797/. Accessed 1 July 2015

Download references

Acknowledgments

Funding for this project was provided by the U.S. Geological Survey Climate and Land Use Change R&D Program. We gratefully thank the U.S. Fish and Wildlife Service staff at Long Lake NWR, with special thanks to M. Rabenberg and C. Jacobsen for their assistance with this study, and Wesley Newton for statistical support. We also thank Robert Striegl and two anonymous reviewers for their insight and helpful comments on this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian A. Tangen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangen, B.A., Finocchiaro, R.G., Gleason, R.A. et al. Greenhouse Gas Fluxes of a Shallow Lake in South-Central North Dakota, USA. Wetlands 36, 779–787 (2016). https://doi.org/10.1007/s13157-016-0782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0782-3

Keywords