, Volume 36, Issue 4, pp 667–680 | Cite as

Environmental Harshness Decreases ant β-Diversity Between Salt Marsh and Neighboring Upland Environments

  • Alejandro D. CanepucciaEmail author
  • Fernando Hidalgo
  • Juan L. Farina
  • Fabiana Cuezzo
  • Oscar O. Iribarne
Original Research


Understanding how wetland organisms interact with neighbor habitats along environmental gradients is important to recognize wetland integrity and its connectivity at landscape-level. We evaluated whether assemblage characteristics (e.g. α-diversity) of marsh-ants are associated with geographic changes in environmental conditions, and if these factors are associated with marsh-upland dissimilarity in ant species composition (β-diversity). Ant-samples were collected both in the marsh and in the neighboring upland habitat at 5-sites along the South-west Atlantic (SWA) coastline (36°S to 40°S), encompassing two-distinct biogeographic regions. Generalized Linear Models showed that at the marsh scale, ant occurrence increased with maximum temperature and Spartina densiflora cover, but decreased with total-plant cover. Ant richness increased with salinity, S. densiflora cover and marsh area; and ant α-diversity increased with S. densiflora cover and decreased with total marsh plant cover and plant height. Composition of ant assemblages differed between the marsh and the upland habitat depending on the site, and β-diversity decreased with precipitation, salinity, tidal amplitude and α-diversity of the herbaceous stratum. Then, the abundance and α-diversity of ants varied along SWA marshes in relation to changes in local environmental factors and the regional landscape. Moreover, changes in species characteristics across coastal-landscape seem to interact with environmental gradients, resulting in reduced β-diversity values with increasing environmental harshness. Thus, our results suggest that the link of geographic changes in the physical environment with the changes in species traits drives the variation in marsh-upland dissimilarity across the space.


Ant assemblages α-diversity β-diversity Latitudinal gradients Spartina Salt marshes South-west Atlantic coast 



We are very grateful to Sol Fanjul and Seth Miller, for their valuable suggestions and corrections on an early version of the manuscript; and to Juan Alberti and Laura Biondi for statistical advice. This work was supported by grants from the Universidad Nacional de Mar del Plata (UNMDP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), International Barcode of Life (IBoL) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT; all to O.O.I).

Supplementary material

13157_2016_777_MOESM1_ESM.doc (144 kb)
ESM 1 (DOC 143 kb)


  1. Adam P (1993) Saltmarsh ecology. Cambridge studies in ecology. Cambridge University Press, CambridgeGoogle Scholar
  2. Agosti D, Majer JD, Alonso LE, Schultz TR (2000) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington DCGoogle Scholar
  3. Andersen AN (1983) Species diversity and temporal distribution of ants in the semi-arid mallee region of northwestern Victoria. Australian Journal of Ecology 8:127–137CrossRefGoogle Scholar
  4. Andersen AN (1997) Using ants as bioindicators: multiscale issues in ant community ecology. Conservation Ecology 1:8–21Google Scholar
  5. Andersen AN (2007) Ant diversity in arid Australia: a systematic overview. In: Snelling RR, Fisher BL, Ward PS (eds) Advances in ant systematics (Hymenoptera: Formicidae): homage to EO Wilson- 50 years of contributions, memoirs of the American Entomological Institute., pp 19–51Google Scholar
  6. Anderson DR, Burnham KP (1999) General strategies for the analysis of ringing data. Bird Study 46:S261–S270CrossRefGoogle Scholar
  7. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  8. Andrew ME, Wulder MA, Coops NC, Baillargeon G (2012) Beta-diversity gradients of butterflies along productivity axes. Global Ecology and Biogeography 21:352–364CrossRefGoogle Scholar
  9. Bertness MD (1991) Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72:138–148CrossRefGoogle Scholar
  10. Bertness MD, Callaway R (1994) Positive interactions in communities: a post cold war perspective. Trends in Ecology & Evolution 9:191–193CrossRefGoogle Scholar
  11. Bertness MD, Ewanchuk PJ (2002) Latitudinal and climatedriven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia 132:392–401CrossRefGoogle Scholar
  12. Bertness MD, Gough L, Shumway SW (1992) Salt tolerances and the distribution of plants across a New England salt marsh. Ecology 72:1842–1851CrossRefGoogle Scholar
  13. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24:127–135CrossRefGoogle Scholar
  14. Brown WL (1973) A comparison of the Hylean and Congo-West African rain forest ant faunas. In: Meggers BJ, Ayens ES, Duckworth WD (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institution Press, Washington DC, pp 161–185Google Scholar
  15. Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New YorkCrossRefGoogle Scholar
  16. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  17. Cabrera AL, Willink A (1973) Biogeografía de America Latina, Serie de Biología, monografía n° 13.Washington, DC. Programa regional de Desarrollo Científico y Tecnológico, departamento de Asuntos Científicos, Organización de Estados Americanos, WashingtonGoogle Scholar
  18. Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software 34:1–29CrossRefGoogle Scholar
  19. Canepuccia AD, Fanjul MS, Fanjul ME, Botto F, Iribarne OO (2008) The intertidal burrowing crab Neohelice (=Chasmagnathus) granulata positively affect rodents in South Western Atlantic salt marshes. Estuaries and Coasts 31:920–930CrossRefGoogle Scholar
  20. Canepuccia AD, Cicchino A, Escalante A, Novaro A, Isacch JP (2009) Differential responses of marsh arthropods to rainfall-induced habitat loss. Zoological Studies 48:174–183Google Scholar
  21. Canepuccia AD, Alberti J, Pascual J, Alvarez G, Cebrian J, Iribarne OO (2010) ENSO episodes modify plant/terrestrial-herbivore interactions in a southwestern Atlantic salt marsh. Journal of Experimental Marine Biology and Ecology 396:42–47CrossRefGoogle Scholar
  22. Canepuccia AD, Pérez CF, Farina JL, Alemany D, Iribarne OO (2013) Dissimilarity in plant species diversity between salt marsh and neighboring environments decreases as environmental harshness increases. Marine Ecology: Progress Series 494:135–148CrossRefGoogle Scholar
  23. Canfield R (1941) Application of line interception in sampling range vegetation. Journal of Forestry 39:388–394Google Scholar
  24. Childres ES, Koning AA (2013) Polydomous Crematogaster pilosa (Hymenoptera: Formicidae) colonies prefer highly connected habitats in a tidal salt marsh. Florida Entomologist 96:235–237CrossRefGoogle Scholar
  25. Clarke A, Gaston KJ (2006) Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences 273:2257–2263CrossRefPubMedPubMedCentralGoogle Scholar
  26. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  27. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  28. Crain CM (2008) Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology 96:166–173Google Scholar
  29. Crawley MJ (2007) The R book. Wiley, New YorkCrossRefGoogle Scholar
  30. Delsinne T, Roisin Y, Herbauts J, Leponce M (2010) Ant diversity along a wide rainfall gradient in the Paraguayan dry Chaco. Journal of Arid Environments 74:1149–1155CrossRefGoogle Scholar
  31. Dunn RR, Agosti D, Andersen AN, Arnan X, Bruhl CA, Cerda X, Ellison AM, Fisher BL, Fitzpatrick MC, Gibb H, Gotelli NJ, Gove AD, Guenard B, Janda M, Kaspari M, Laurent EJ, Lessard JP, Longino JT, Majer JD, Menke SB, McGlynn TP, Parr CL, Philpott SM, Pfeiffer M, Retana J, Suarez VA, Vasconcelos HL, Weiser MD, Sanders NJ (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters 12:324–333CrossRefPubMedGoogle Scholar
  32. Fergnani P, Sackmann P, Cuezzo F (2008) Environmental determinants of the distribution and abundance of the ants, Lasiophanes picinus and L. valdiviensis, in Argentina. Journal of Insect Science 8:1–16CrossRefGoogle Scholar
  33. Fergnani PN, Sackmann P, Ruggiero A (2010) Richness-environment relationships in epigaeic ants across the Subantarctic-Patagonian transition zone. Insect Conservation and Diversity 3:278–290CrossRefGoogle Scholar
  34. Fergnani PN, Sackmann P, Ruggiero A (2013) The spatial variation in ant species composition and functional groups across the Subantarctic-Patagonian transition zone. Journal of Insect Conservation 17:295–305CrossRefGoogle Scholar
  35. Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation 7:1221–1244CrossRefGoogle Scholar
  36. Folgarait PJ, D’Adamo P, Gilbert LE (2004) A grassland ant community in Argentina: the case of Solenopsis richteri and Camponotus punctulatus (Hymenoptera: Formicidae) attaining high densities in their native ranges. Annals of the Entomological Society of America 97:450–457CrossRefGoogle Scholar
  37. Gaston K (2000) Global patterns in biodiversity. Nature 405:220–227CrossRefPubMedGoogle Scholar
  38. Gonçalves CR, Nunes AM (1984) Formigas das praias e restingas do Brasil. In: Lacerda LD, Araújo DSD, Cerqueira R, Tureq B (eds) Restingas: origem, estrutura, processos. CEUFF, Niterói, pp 373–378Google Scholar
  39. Gotelli NJ, Ellison AM, Dunn RR, Sanders NJ (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecological News 15:13–19Google Scholar
  40. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley and Sons, ChichesterGoogle Scholar
  41. Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecological Applications 12:321–334Google Scholar
  42. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 24:3105–3117CrossRefGoogle Scholar
  43. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. American Naturalist 163:192–211CrossRefPubMedGoogle Scholar
  44. Hof C, Brändle M, Brandl R (2008) Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17:539–546CrossRefGoogle Scholar
  45. Hölldobler B, Wilson E (1990) The ants. Belknap, Harvard University Press, CambridgeCrossRefGoogle Scholar
  46. Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145–159CrossRefGoogle Scholar
  47. Isacch JP, Costa CSB, Rodrıguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33:888–900CrossRefGoogle Scholar
  48. Kabashima JN, Greenberg L, Rust MK, Paine TD (2007) Aggressive interactions between Solenopsis invicta and Linepithema humile (Hymenoptera: Formicidae) under laboratory conditions. Journal of Economic Entomology 100:148–154CrossRefPubMedGoogle Scholar
  49. Kaspari M (1993) Body size and microclimate use in Neotropical granivorous ants. Oecologia 96:500–507CrossRefGoogle Scholar
  50. Kaspari M, Valone TJ (2002) On ectotherm abundance in a seasonal environment- studies of a desert ant assemblage. Ecology 83:2991–2996Google Scholar
  51. Kaspari M, Alonso L, O’Donnell S (2000) Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society B: Biological Sciences 267:485–489CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kaspari M, Yanoviakc SP, Dudley R (2008) On the biogeography of salt limitation: a study of ant communities. Proceedings of the National Academy of Sciences 105:17848–17851CrossRefGoogle Scholar
  53. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157–164CrossRefGoogle Scholar
  54. Koleff P, Lennon JJ, Gaston KJ (2003) Are there latitudinal gradients in species turnover? Global Ecology and Biogeography 12:483–498CrossRefGoogle Scholar
  55. Lassau SA, Hochuli DF (2004) Effects of habitat complexity on ant assemblages. Ecography 27:157–164CrossRefGoogle Scholar
  56. Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers R, Harms KE, Luizao RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2, e1017CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lennon JJ, Greenwood JJD, Turner JRG (2000) Bird diversity and environmental gradients in Britain: a test of the species-energy hypothesis. Journal of Animal Ecology 69:581–598CrossRefGoogle Scholar
  58. Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, NewYork, pp 237–263CrossRefGoogle Scholar
  59. Lindsey PA, Skinner JD (2001) Ant composition and activity patterns as determined by pitfall trapping and other methods in three habitats in the semi-arid Karoo. Journal of Arid Environments 48:551–568CrossRefGoogle Scholar
  60. Longino JT, Coddington JA, Colwell RK (2002) The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology 83:689–702CrossRefGoogle Scholar
  61. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  62. Manly BFJ (1998) Randomization, bootstrap and Monte Carlo methods in biology, 2nd edn. Chapman and Hall Press, LondonGoogle Scholar
  63. Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. John Wiley and Sons, formerly Van Nostrand Reinhold, New YorkGoogle Scholar
  64. Neter J, Kutner MH, Nachtscheim CJ, Wasserman W (1996) Applied linear statistical models, 4th edn. Times Mirror Higher Education Group, ChicagoGoogle Scholar
  65. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.2-1.
  66. Pennings SC, Grant MB, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93:159–167CrossRefGoogle Scholar
  67. Perillo GME, Piccolo MC, Marcovecchio J (2006) Coastal oceanography of the western south Atlantic continental shelf (33 to 55° S) (5° W). In: Robinson AR, Brink KH (eds) The sea, ideas and observations on progress in the study of the seas: the global coastal ocean. Harvard University Press, Boston MA, Interdisciplinary regional studies and syntheses, pp 295–328Google Scholar
  68. Pol R, Lopez de Casenave J (2004) Activity patterns of harvester ants Pogonomyrmex pronotalis and Pogonomyrmex rastratus in the Central Monte Desert, Argentina. Journal of Insect Behavior 17:647–661CrossRefGoogle Scholar
  69. R Development Core Team (2012). R : A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  70. Retana J, Cerda X (2000) Patterns of diversity and composition of Mediterranean ground ant communities tracking spatial and temporal variability in the thermal environment. Oecologia 123:436–444CrossRefGoogle Scholar
  71. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171CrossRefPubMedGoogle Scholar
  72. Sanders NJ, Lessard J-P, Fitzpatrick MC, Dunn RR (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography 16:640–649CrossRefGoogle Scholar
  73. Segev U (2010) Regional patterns of ant-species richness in an arid region: the importance of climate and biogeography. Journal of Arid Environments 74:646–652CrossRefGoogle Scholar
  74. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12CrossRefGoogle Scholar
  75. Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133:240–256CrossRefGoogle Scholar
  76. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  77. Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes eight hypotheses. Biological Reviews 87:661–685CrossRefPubMedGoogle Scholar
  78. Valiela I (2015) The Great Sippewissett Salt Marsh Plots—some history, highlights, and contrails from a long-term study. Estuaries and Coasts 38:1099–1120CrossRefGoogle Scholar
  79. Valiela I, Teal JM, Volkmann S, Van Etten R, Allen S (1985) Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. Journal of Experimental Marine Biology and Ecology 89:1–26CrossRefGoogle Scholar
  80. Wang C, Strazanac JS, Butler L (2001) Association between ants (hymenoptera: formicidae) and habitat characteristics in oak-dominated mixed forests. Environmental Entomology 30:842–848CrossRefGoogle Scholar
  81. Wilson EO (2003) Pheidole in the new world: a dominant, hyperdiverse ant genus. Harvard University Press, CambridgeGoogle Scholar
  82. Wittman SE, Sanders NJ, Ellison AM, Jules ES, Ratchford JS, Gotelli NJ (2010) Species interactions and thermal constraints on ant community structure. Oikos 119:551–559CrossRefGoogle Scholar
  83. Wu H, Batzer DP, Yan X, Lu X, Wu D (2013) Contributions of ant mounds to soil carbon and nitrogen pools in a marsh wetland of Northeastern China. Applied Soil Ecology 70:9–15CrossRefGoogle Scholar
  84. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New YorkGoogle Scholar

Copyright information

© Society of Wetland Scientists 2016

Authors and Affiliations

  • Alejandro D. Canepuccia
    • 1
    Email author
  • Fernando Hidalgo
    • 1
    • 2
  • Juan L. Farina
    • 3
  • Fabiana Cuezzo
    • 4
    • 5
  • Oscar O. Iribarne
    • 1
  1. 1.Laboratorio de EcologíaInstituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar Del Plata (UNMDP)Mar del PlataArgentina
  2. 2.Grupo Humedales y Ambientes CosterosInstituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar Del Plata (UNMDP)Mar del PlataArgentina
  3. 3.Museo de Ciencias Naturales Lorenzo Scaglia, Área EntomologíaMar del PlataArgentina
  4. 4.Instituto Superior de Entomología “Dr. A Willink”, Facultad de Ciencias Naturales e IMLUniversidad Nacional de Tucumán (UNT)San Miguel de TucumánArgentina
  5. 5.Consejo Nacional de Investigaciones Científicas y Técnicas (UEL - CONICET)San Miguel de TucumánArgentina

Personalised recommendations