Skip to main content

Advertisement

Log in

Use of bi-Seasonal Landsat-8 Imagery for Mapping Marshland Plant Community Combinations at the Regional Scale

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Coastal marshlands may provide ecosystem services but their vegetation and related services may be impacted by environmental changes. Habitat mapping is a key step to monitor the spatio-temporal dynamics of vegetation and detect on-going changes. However, it is still a challenge to produce reliable vegetation maps at the regional scale. This study aims to evaluate the potential of new Landsat-8 imageries (acquired in September and December 2013) for mapping fine-grained plant communities in coastal marshlands. Field-based vegetation maps were collected for 270 km of marshlands along the French Atlantic coast. In order to be identifiable on the satellite image, fine-grained vegetation units were aggregated into fewer plant community combinations. The classification accuracy was assessed by comparison with field-based vegetation data and compared between the supervised methods used, including Minimum Distance, Mahalanobis, Maximum Likelihood, Random Forest and Support Vector Machine. The best result was obtained with the Maximum Likelihood classifier and by combining the two Landsat-8 images (85.9 % accuracy overall). Three main habitat types dominated the coastal Atlantic marshlands: croplands, Trifolio maritimae-Oenantheto silaifoliae geosigmetum and Puccinellio maritimae-Arthrocnemeto fruticosi geosigmetum. The reliability of the vegetation map produced will provide a good basis for monitoring the conservation status of the various habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akumu CE, Pathirana S, Baban S, Bucher D (2010) Monitoring coastal wetland communities in north-eastern NSW using ASTER and Landsat satellite data. Wetl Ecol Manag 18:357–365

    Article  Google Scholar 

  • Amiaud B, Bouzillé JB, Tournade F, Bonis A (1998) Spatial patterns of soil salinities in old embanked marshlands in western France. Wetlands 18:482–494

    Article  Google Scholar 

  • Baker C, Lawrence R, Montagne C, Patten D (2006) Mapping wetlands and riparian areas using Landsat etm1 imagery and decision-tree-based models. Wetlands 26:465–474

    Article  Google Scholar 

  • Barillé L, Robin M, Harin N, Bargain A, Launeau P (2010) Increase in seagrass distribution at bourgneuf bay (France) detected by spatial remote sensing. Aquat Bot 92:185–194

    Article  Google Scholar 

  • Berberoglu S, Yilmaz KT, Özkan C (2004) Mapping and monitoring of coastal wetlands of çukurova delta in the eastern Mediterranean region. Biodivers Conserv 13:615–633

    Article  Google Scholar 

  • Biondi E, Casavecchia S, Pesaresi S (2011) Spontaneus renaturalization processes of the vegetation in the abandoned fields (central Italy). Ann di Bot 6:65–94

    Google Scholar 

  • Bouzillé JB, Kernéis E, Bonis A, Touzard B (2001) Vegetation and ecological gradients in abandoned salt pans in western France. J Veg Sci 12:269–278

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Cardoso GF, Jr CS, PWM S-F (2013) Using spectral analysis of landsat-5 TM images to map coastal wetlands in the amazon river mouth, Brazil. Wetl Ecol Manag 22:79–92

    Article  Google Scholar 

  • Carreño MF, Esteve MA, Martinez J, et al (2008) Habitat changes in coastal wetlands associated to hydrological changes in the watershed. Estuar Coast Shelf Sci 77:475–483

    Article  Google Scholar 

  • Chauveau E, Chadenas C, Comentale B, Pottier P, Blanlœil A, Feuillet T, Mercier D, Pourinet L, Rollo N, Tillier I, Trouillet B (2011) Xynthia: lessons of a disaster. Cybergeo: Eur J Geogr. doi:10.4000/cybergeo.23763

    Google Scholar 

  • Cingolani AM, Renison D, Zak MR, Cabido MR (2004) Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sens Environ 92:84–97

    Article  Google Scholar 

  • Congalton RG, Oderwald RG, Mead RA (1983) Assessing Landsat Classification accuracy using discrete multivariate analysis statistical techniques. Photogramm Eng Remote Sens 49:1671–1678

    Google Scholar 

  • Decocq G (2002) Patterns of plant species and community diversity at different organization levels in a forested riparian landscape. J Veg Sci 13:91–106

    Article  Google Scholar 

  • Dimitriadou E, Hornik K, Leisch F, et al (2011) e1071: misc functions of the department of statistics (e1071), TU Wien. R Package version 1.5–27.

  • Dumont B, Rossignol N, Loucougaray G, Carrère P, Chadoeuf J, Fleurance G, Bonis A, Farruggia A, Gaucherand S, Ginane C, Louault F, Marion B, Mesléard F, Yavercovski N (2012) When does grazing generate stable vegetation patterns in temperate Pastures? Agric Ecosyst Environ 153:50–56

    Article  Google Scholar 

  • Duncan P, Hewison AJM, Houte S, Rosoux R, Tournebize T, Dubs F, Burel F, Bretagnolle V (1999) Long-term changes in agricultural practices and wildfowling in an internationally important wetland, and their effects on the guild of wintering ducks. J Appl Ecol 36:11–23

    Article  Google Scholar 

  • Géhu J-M (2011) On the opportunity to celebrate the centenary of modern phytosociology in 2010. Plant Biosyst 145:4–8

    Article  Google Scholar 

  • Géhu JM, Bouzille JB, Bioret F, Godeau M, Botineau M, Clement B, Touffet J, Lahondere C (1991) Approche paysagere symphytosociologique des Marais littoraux du centre-Ouest de la France. Colloques Phytosociologique Phytosociologie et Paysages 17:109–127

  • Godet L, Thomas A (2013) Three centuries of land cover changes in the largest French Atlantic wetland provide new insights for wetland conservation. Appl Geogr 42:133–139

    Article  Google Scholar 

  • Grimaldi M, Oszwald J, Dolédec S, et al (2014) Ecosystem services of regulation and support in Amazonian pioneer fronts: searching for landscape drivers. Landsc Ecol 29:311–328

    Article  Google Scholar 

  • Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. John Wiley& Sons, Chichester

    Google Scholar 

  • Hijmans RJ, van Etten J (2012) Raster: geographic analysis and modeling with raster data. R Package Version 2.0–12

  • Hoekstra JM, Molnar JL, Jennings M, et al (2010) The atlas of global conservation: changes, challenges and opportunities to make a difference. University of California Press Berkeley, CA

    Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900

    Article  Google Scholar 

  • Jarvis A, Reuter H, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90 m database. http://srtm.csi.cgiar.org

  • Jelinski DE, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landsc Ecol 11:129–140

    Article  Google Scholar 

  • Jia K, Wei X, Gu X, Yao Y, Xie X, Li B (2014) Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto International 1–11

  • Kennedy RE, Andréfouët S, Cohen WB, et al (2014) Bringing an ecological view of change to Landsat-based remote sensing. Front Ecol Environ 12:339–346

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401

    Article  Google Scholar 

  • Lang S, Mairota P, Pernkopf L, Schioppa EP (2015) Earth observation for habitat mapping and biodiversity monitoring. Int J Appl Earth Obs Geoinf 37:1–6

    Article  Google Scholar 

  • Lee TM, Yeh HC (2009) Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui river estuary mangrove communities, Taiwan. Ecol Eng 35:487–496

    Article  Google Scholar 

  • Leguédois S, Party JP, Dupouey JL, Gauquelin T, Gégout JC, Lecareux C, Badeau V, Probst A (2011) The vegetation map of the CNRS going numerical: the geographical database of the vegetation of France. Cybergeo : Eur J Geogr. doi:10.4000/cybergeo.24688

    Google Scholar 

  • Li J, Gao S, Wang Y (2010) Invading cord grass vegetation changes analyzed from Landsat-TM imageries: a case study from the wanggang area, Jiangsu coast, eastern China. Acta Oceanol Sin 29:26–37

    Article  CAS  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • MacAlister C, Mahaxay M (2009) Mapping wetlands in the lower Mekong basin for wetland resource and conservation management using Landsat ETM images and field survey data. J Environ Manag 90:2130–2137

    Article  Google Scholar 

  • Marion B, Bonis A, Bouzillé J-B (2010) How much does grazing-induced heterogeneity impact plant diversity in wet grasslands? Ecoscience 17:229–239

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. John Wiley and Sons, Inc., Hoboken

    Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66:247–259

    Article  Google Scholar 

  • Murgues M, Marquet M, Debaine F (2014) Cartographie des formations végétales des zones humides du parc naturel régional de brière par analyse d’image orientée-objet. Les Cahiers Nantais 5–16(in french)

  • Ottinger M, Kuenzer C, Liu G, et al (2013) Monitoring land cover dynamics in the yellow river delta from 1995 to 2010 based on Landsat 5 TM. Appl Geogr 44:53–68

    Article  Google Scholar 

  • Ozenda P, Lucas MJ (1987) Esquisse d’une carte de la végétation potentielle de la France à 1/1 500 000. Documents Cartographie écologique 30:49–80

  • Rapinel S, Clément B, Magnanon S, Sellin V, Hubert-Moy L (2014) Identification and mapping of natural vegetation on a coastal site using a worldview-2 satellite image. J Environ Manag 144:236–246

    Article  Google Scholar 

  • Rapinel S, Hubert-Moy L, Clément B (2015) Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping. Int J Appl Earth Obs Geoinf 37:56–64

    Article  Google Scholar 

  • Richards JA (1999) Remote sensing digital image analysis: an introduction. Springer-Verlag, New York

    Book  Google Scholar 

  • Rivas-Martinez S (2005) Notions on dynamic-catenal phytosociology as a basis of landscape science. Plant Biosyst 139:135–144

    Article  Google Scholar 

  • Roelofsen HD, Kooistra L, van Bodegom PM, Verrelst J, Krol J, Witte JPM (2014) Mapping a priori defined plant associations using remotely sensed vegetation characteristics. Remote Sens Environ 140:639–651

    Article  Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, et al (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–157

    Article  PubMed  Google Scholar 

  • Sanchez-Hernandez C, Boyd DS, Foody GM (2007) Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal saltmarsh habitats. Ecol Inf 2:83–88

    Article  Google Scholar 

  • Sawtschuk J, Bioret F (2012) Diachronic analysis of vegetation spatial dynamic in Loire esturay. Photo-Interpretation 48:15–28

    Google Scholar 

  • Schmeller DS, Evans D, Lin Y-P, Henle K (2014) The national responsibility approach to setting conservation priorities—recommendations for its use. J Nat Conserv 22:349–357

    Article  Google Scholar 

  • Schmidtlein S (2003) Raster-based detection of vegetation patterns at landscape scale levels. Phytocoenologia 33:603–621

    Article  Google Scholar 

  • Schuster C, Schmidt T, Conrad C, et al (2015) Grassland habitat mapping by intra-annual time series analysis – comparison of RapidEye and TerraSAR-X satellite data. Int J Appl Earth Obs Geoinf 34:25–34

  • Turner W, Rondinini C, Pettorelli N, et al (2015) Free and open-access satellite data are key to biodiversity conservation. Biol Conserv 182:173–176

    Article  Google Scholar 

  • Valentini E, Taramelli A, Filipponi F, Giulio S (2015) An effective procedure for EUNIS and Natura 2000 habitat type mapping in estuarine ecosystems integrating ecological knowledge and remote sensing analysis. Ocean Coast Management 108:52–64

    Article  Google Scholar 

  • Van der Maarel E (2005) Vegetatio ecology – an overwiew. In : Vegetation ecology. Edit eddy van der maarel. 1–51. Blackwell Publishing, Malden.

  • Vanden Borre J, Paelinckx D, Mücher CA, Kooistra L, Haest B, De Blust G, Schmidt AM (2011) Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward. J Nat Conserv 19:116–125

    Article  Google Scholar 

  • Verger F (2005) Marais et estuaires du littoral français. Belin, Paris

    Google Scholar 

  • Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23

    Article  Google Scholar 

  • Zak MR, Cabido M (2002) Spatial patterns of the Chaco vegetation of central Argentina: integration of remote sensing and phytosociology. Appl Veg Sci 5:213–226

    Article  Google Scholar 

  • Zhang Y, Lu D, Yang B, et al (2011) Coastal wetland vegetation classification with a Landsat thematic mapper image. Int J Remote Sens 32:545–561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the CarHab project (French Ministry of Ecology and Sustainable Development). The authors thank Olivier Gore for his help in the field ; Nicolas Rossignol, Renan Leroux and Alban Thomas for their help in data analysis; the GIP Loire Estuaire, DREAL Pays de la Loire, DREAL Poitou Charentes, and the Parc Naturel Régional du Marais Poitevin for providing the field-based vegetation maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rapinel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapinel, S., Bouzillé, JB., Oszwald, J. et al. Use of bi-Seasonal Landsat-8 Imagery for Mapping Marshland Plant Community Combinations at the Regional Scale. Wetlands 35, 1043–1054 (2015). https://doi.org/10.1007/s13157-015-0693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0693-8

Keywords

Navigation