Wetlands

, Volume 35, Issue 2, pp 357–368 | Cite as

Estimating the Importance of Aquatic Primary Productivity for Phosphorus Retention in Florida Everglades Mesocosms

  • Darryl E. Marois
  • William J. Mitsch
  • Keunyea Song
  • Shili Miao
  • Li Zhang
  • Chung T. Nguyen
Original Research

Abstract

Constructed wetlands are being utilized to mitigate the impact that excess phosphorus in surface water has on the natural state of the Florida Everglades. This study investigates the role of aquatic metabolism in the retention of phosphorus in wetlands and how it varies with plant community. Eighteen 6-m2 mesocosms receiving inflows with relatively low phosphorus concentrations were planted with one of five wetland plant communities or left to natural colonization. In 2012, the mesocosms left to naturally colonize had significantly higher aquatic gross primary production (GPP) at 7.0 g O2 m−2 d−1 than all other communities. Mesocosms planted with Nymphaea odorata and those planted with a mix of Najas guadalupensis and Chara sp. had significantly higher GPP (5.5 and 5.9 g O2 m−2 d−1, respectively) than those with Typha domingensis, Eleocharis cellulosa, and Cladium jamaicense (1.7, 2.3, and 1.5 g O2 m−2 d−1, respectively). Rates of phosphorus cycling due to aquatic metabolism were estimated to range from 2.5 g P m−2 yr−1 in both the Cladium and Eleocharis communities to 7.7 g P m−2 yr−1in the naturally colonized mesocosms. These results provide evidence that wetland plant communities without high-biomass emergent macrophytes may perform best in the retention of phosphorus in low inflow concentration conditions.

Keywords

Wetlands Florida Everglades Phosphorus retention Aquatic metabolism Water quality Ecosystem services Phosphorus coprecipitation 

References

  1. Ahn C, Mitsch WJ (2002) Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecological Engineering 18: 327-342. 10.1016/S0925-8574(01)00092-1
  2. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington D.CGoogle Scholar
  3. Andersen JM (1975) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331. doi:10.1016/0043-1354(76)90175-5 CrossRefGoogle Scholar
  4. Beadle C, Long S (1985) Photosynthesis - Is it limiting to biomass production. Biomass 8:119–168. doi:10.1016/0144-4565(85)90022-8 CrossRefGoogle Scholar
  5. Brenner M, Hodell DA, Leyden BW, Curtis JH, Kenney WF, Gu BH, Newman JM (2006) Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte-dominated lake. J Paleolimnol 35:129–148. doi:10.1007/s10933-005-7881-0 CrossRefGoogle Scholar
  6. Chimney M, Wenkert L, Pietro K (2006) Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA). Ecol Eng 27:322–330. doi:10.1016/j.ecoleng.2006.05.017 CrossRefGoogle Scholar
  7. Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglass RL, Foster CR, Thomas RG (2013) Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr 83:155–176. doi:10.1890/12-1497.1 CrossRefGoogle Scholar
  8. Cole J, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–1730. doi:10.4319/lo.2000.45.8.1718 CrossRefGoogle Scholar
  9. Coloso JJ, Cole JJ, Hanson PC, Pace ML (2008) Depth-integrated, continuous estimates of metabolism in a clear-water lake. Can J Fish Aquat Sci 65:712–722. doi:10.1139/F08-006 CrossRefGoogle Scholar
  10. Cronk JK, Mitsch WJ (1994) Aquatic metabolism in 4 newly constructed fresh-water wetlands with different hydrologic inputs. Ecol Eng 3:449–468. doi:10.1016/0925-8574(94)00012-3 CrossRefGoogle Scholar
  11. Fisher J, Acreman MC (1999) Wetland nutrient removal: a review of the evidence. Hydrol Earth Syst Sci 8:673–685. doi:10.5194/hess-8-673-2004 CrossRefGoogle Scholar
  12. Fisher MM, Reddy KR (2001) Phosphorus flux from wetland soils affected by long-term nutrient loading. J Environ Qual 30:261–271. doi:10.2134/jeq2001.301261x CrossRefPubMedGoogle Scholar
  13. Gelda RK, Effler SW (2002) Estimating oxygen exchange across the air-water interface of a hypereutrophic lake. Hydrobiologia 487:243–254. doi:10.1023/A:1022994217578 CrossRefGoogle Scholar
  14. Grimshaw HJ, Wetzel RG, Brandenburg M et al (1997) Shading of periphyton communities by wetland emergent macrophytes: Decoupling of algal photosynthesis from microbial nutrient retention. Arch Hydrobiol 139:17–27Google Scholar
  15. Hagerthey SE, Cole JJ, Kilbane D (2010) Aquatic metabolism in the everglades: dominance of water column heterotrophy. Limnol Oceanogr 55:653–666. doi:10.4319/lo.2009.55.2.0653 CrossRefGoogle Scholar
  16. Hall CAS, Moll R (1975) Methods of assessing aquatic primary productivity. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, New York, pp 19–53CrossRefGoogle Scholar
  17. Hansson L (1992) The role of food-chain composition and nutrient availability in shaping algal biomass development. Ecology 73:241–247. doi:10.2307/1938735 CrossRefGoogle Scholar
  18. Hartley AM, House WA, Callow ME, Leadbeater BSC (1997) Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res 31:2261–2268. doi:10.1016/S0043-1354(97)00103-6 CrossRefGoogle Scholar
  19. House WA (1990) The prediction of phosphate coprecipitation with calcite in fresh-waters. Water Res 24:1017–1023. doi:10.1016/0043-1354(90)90124-O CrossRefGoogle Scholar
  20. International Organization for Standardization (ISO) (1995) ISO 10694:1995 Soil quality – Determination of organic and total carbon after dry combustion. ISO, GenevaGoogle Scholar
  21. International Organization for Standardization (ISO) (1998) ISO 13878:1998 Soil quality –Determination of total nitrogen content by dry combustion. ISO, GenevaGoogle Scholar
  22. Jansson M, Bergstrom A-K, Lymer D, Vrede K, Karlsson J (2006) Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios. Microb Ecol 52:358–364. doi:10.1007/s00248-006-9013-4 CrossRefPubMedGoogle Scholar
  23. Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, Boca RatonGoogle Scholar
  24. Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes - a review. Aquat Bot 72:249–260. doi:10.1016/S0304-3770(01)00204-2 CrossRefGoogle Scholar
  25. Maynard JJ, Dahlgren RA, O’Geen AT (2012) Quantifying spatial variability and biogeochemical controls of ecosystem metabolism in a eutrophic flow-through wetland. Ecol Eng 47:221–236. doi:10.1016/j.ecoleng.2012.06.032 CrossRefGoogle Scholar
  26. Mitsch WJ, Gosselink JG (1986) Wetlands. VanNostrand Reinhold, New YorkGoogle Scholar
  27. Mitsch WJ, Gosselink JG (2007) Wetlands, 5th edn. Wiley, HobokenGoogle Scholar
  28. Mitsch WJ, Kaltenborn KS (1980) Effects of copper sulfate application on diel dissolved oxygen and metabolism in the Fox Chain of Lakes. Trans Illi State Acad Sci 73:5δ5–64Google Scholar
  29. Mitsch WJ, Cronk JK, Wu X, Nairn RW, Hey DL (1995) Phosphorus retention in constructed freshwater riparian marshes. Ecol Appl 5:830–845. doi:10.2307/1941991 CrossRefGoogle Scholar
  30. Mitsch WJ, Horne AJ, Nairn RW (2000) Nitrogen and phosphorus retention in wetlands: ecological approaches to solving excess nutrient problems. Ecol Eng 14:1–7. doi:10.1016/S0925-8574(99)00015-4 Google Scholar
  31. Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland ecosystems. Wiley, Hoboken, 295 ppGoogle Scholar
  32. Mitsch WJ, Zhang L, Chung N, Marois D, Song, K, Villa JA (2013) Assessing nutrient removal efficacy and uptake of several native wetland plant communities. Final Report to South Florida Water Management District, Everglades Wetland Research Park, Florida Gulf Coast University, Naples, Florida, 48 pp. + appendices.Google Scholar
  33. Mitsch WJ, Zhang L, Waletzko E, Bernal B (2014) Validation of the ecosystem services of created wetlands: two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering 72: 11-24. doi.org/10.1016/j.ecoleng.2014.09.108
  34. Mitsch WJ, Zhang L, Marois DE, Song K (2015) Protecting the Florida Everglades wetlands with wetlands: can stormwater phosphorus be reduced to oligotrophic conditions? Ecological Engineering in press doi: 10.1016/j.ecoleng.2014.10.006
  35. Newman S, Grace JB, Koebel JW (1996) Effects of nutrients and hydroperiod on typha, cladium, and eleocharis: implications for everglades restoration. Ecol Appl 6:774–783. doi:10.2307/2269482 CrossRefGoogle Scholar
  36. Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the everglades so unique? Ecosystems 4:603–624. doi:10.1007/s10021-001-0032-1 CrossRefGoogle Scholar
  37. Odum EP (1969) Strategy of ecosystem development. Science 164:262–270. doi:10.1126/science.164.3877.262 CrossRefPubMedGoogle Scholar
  38. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1(2):102–117. doi:10.4319/lo.1956.1.2.0102 CrossRefGoogle Scholar
  39. Odum HT, Hoskin CM (1958) Comparative studies on the metabolism of marine waters. Publ Ma Sci Univ Texas 5:16–46Google Scholar
  40. Pant HK, Reddy KR (2003) Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Res 37:965–972. doi:10.1016/S0043-1354(02)00474-8 CrossRefPubMedGoogle Scholar
  41. Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5° to 60 ° C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216. doi:10.2475/ajs.278.2.179 CrossRefGoogle Scholar
  42. Reddy KR, DeLaune RD, DeBusk WF, Koch MS (1993) Long-term nutrient accumulation in the Everglades. (northern Everglades of Florida). Soil Sci Soc Am J 57:1147–1155. doi:10.2136/sssaj1993.03615995005700040044x CrossRefGoogle Scholar
  43. Reddy KR, Connor GAO, Gale PM (1998) Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. J Environ Qual 27:438–4473. doi:10.2134/jeq1998.00472425002700020027x CrossRefGoogle Scholar
  44. Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146. doi:10.1080/10643389991259182 CrossRefGoogle Scholar
  45. Reeder BC (1994) Estimating the role of autotrophs in nonpoint-source phosphorus retention in a Laurentian Great-Lakes coastal wetland. Ecol Eng 3:161–169. doi:10.1016/0925-8574(94)90043-4 CrossRefGoogle Scholar
  46. Reeder BC (2011) Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA). Ecol Eng 37:1772–1778. doi:10.1016/j.ecoleng.2011.06.018 CrossRefGoogle Scholar
  47. South Florida Water Management District (SFWMD) (2013) Annual permit report for the Everglades stormwater treatment areas. 2013 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL.Google Scholar
  48. Staehr PA, Bade D, Van de Bogert MC et al (2010) Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr Methods 8:628–644. doi:10.4319/lom.2010.8.628 CrossRefGoogle Scholar
  49. Talling JF (2010) pH, the CO2 system and freshwater science. Freshw Rev 3:133–146. doi:10.1608/FRJ-3.2.156 CrossRefGoogle Scholar
  50. Tobias CR, Böhlke JK, Harvey JW (2007) The oxygen-18 isotope approach for measuring aquatic metabolism in high productivity waters. Limnol Oceanogr 52:1439–1453. doi:10.4319/lo.2007.52.4.1439 CrossRefGoogle Scholar
  51. Tuttle CL, Zhang L, Mitsch WJ (2008) Aquatic metabolism as an indicator of the ecological effects of hydrologic pulsing in flow-through wetlands. Ecol Indic 8:795–806. doi:10.1016/j.ecolind.2007.09.005 CrossRefGoogle Scholar
  52. Urban NH, Davis SM, Aumen NG (1993) Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. Aquat Bot 46:203–223. doi:10.1016/0304-3770(93)90002-E CrossRefGoogle Scholar
  53. Van de Bogert MC, Carpenter SR, Cole JJ, Pace ML (2007) Assessing pelagic and benthic metabolism using free water measurements. Limnol Oceanogr Methods 5:145–155. doi:10.4319/lom.2007.5.145 CrossRefGoogle Scholar
  54. Venkiteswaran JJ, Schiff SL, Wassenaar LI (2008) Aquatic metabolism and ecosystem health assessment using dissolved O-2 stable isotope diel curves. Ecol Appl 18:965–982. doi:10.1890/07-0491.1 CrossRefPubMedGoogle Scholar
  55. Villa JA, Mitsch WJ, Song K, Miao SL (2014) Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades. Ecol Eng 71:118–125. doi:10.1016/j.ecoleng.2014.07.011 CrossRefGoogle Scholar
  56. Wahl M (2008) Ecological modulation of environmental stress: interactions between ultraviolet radiation, epibiotic snail embryos, plants and herbivores. J Anim Ecol 77:549–557. doi:10.1111/j.1365-2656.2007.01352.x CrossRefPubMedGoogle Scholar

Copyright information

© Society of Wetland Scientists 2015

Authors and Affiliations

  • Darryl E. Marois
    • 1
    • 2
  • William J. Mitsch
    • 1
    • 2
  • Keunyea Song
    • 3
  • Shili Miao
    • 4
  • Li Zhang
    • 1
    • 2
  • Chung T. Nguyen
    • 2
    • 5
  1. 1.School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA
  2. 2.Everglades Wetland Research ParkFlorida Gulf Coast UniversityNaplesUSA
  3. 3.School of Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  4. 4.South Florida Water Management DistrictWest Palm BeachUSA
  5. 5.Department of Environmental BiotechnologyNong Lam UniversityHo Chi Minh CityVietnam

Personalised recommendations