Skip to main content
Log in

Estimating the Importance of Aquatic Primary Productivity for Phosphorus Retention in Florida Everglades Mesocosms

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Constructed wetlands are being utilized to mitigate the impact that excess phosphorus in surface water has on the natural state of the Florida Everglades. This study investigates the role of aquatic metabolism in the retention of phosphorus in wetlands and how it varies with plant community. Eighteen 6-m2 mesocosms receiving inflows with relatively low phosphorus concentrations were planted with one of five wetland plant communities or left to natural colonization. In 2012, the mesocosms left to naturally colonize had significantly higher aquatic gross primary production (GPP) at 7.0 g O2 m−2 d−1 than all other communities. Mesocosms planted with Nymphaea odorata and those planted with a mix of Najas guadalupensis and Chara sp. had significantly higher GPP (5.5 and 5.9 g O2 m−2 d−1, respectively) than those with Typha domingensis, Eleocharis cellulosa, and Cladium jamaicense (1.7, 2.3, and 1.5 g O2 m−2 d−1, respectively). Rates of phosphorus cycling due to aquatic metabolism were estimated to range from 2.5 g P m−2 yr−1 in both the Cladium and Eleocharis communities to 7.7 g P m−2 yr−1in the naturally colonized mesocosms. These results provide evidence that wetland plant communities without high-biomass emergent macrophytes may perform best in the retention of phosphorus in low inflow concentration conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn C, Mitsch WJ (2002) Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecological Engineering 18: 327-342. 10.1016/S0925-8574(01)00092-1

  • American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington D.C

    Google Scholar 

  • Andersen JM (1975) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331. doi:10.1016/0043-1354(76)90175-5

    Article  Google Scholar 

  • Beadle C, Long S (1985) Photosynthesis - Is it limiting to biomass production. Biomass 8:119–168. doi:10.1016/0144-4565(85)90022-8

    Article  CAS  Google Scholar 

  • Brenner M, Hodell DA, Leyden BW, Curtis JH, Kenney WF, Gu BH, Newman JM (2006) Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte-dominated lake. J Paleolimnol 35:129–148. doi:10.1007/s10933-005-7881-0

    Article  Google Scholar 

  • Chimney M, Wenkert L, Pietro K (2006) Patterns of vertical stratification in a subtropical constructed wetland in south Florida (USA). Ecol Eng 27:322–330. doi:10.1016/j.ecoleng.2006.05.017

    Article  Google Scholar 

  • Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglass RL, Foster CR, Thomas RG (2013) Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr 83:155–176. doi:10.1890/12-1497.1

    Article  Google Scholar 

  • Cole J, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–1730. doi:10.4319/lo.2000.45.8.1718

    Article  Google Scholar 

  • Coloso JJ, Cole JJ, Hanson PC, Pace ML (2008) Depth-integrated, continuous estimates of metabolism in a clear-water lake. Can J Fish Aquat Sci 65:712–722. doi:10.1139/F08-006

    Article  Google Scholar 

  • Cronk JK, Mitsch WJ (1994) Aquatic metabolism in 4 newly constructed fresh-water wetlands with different hydrologic inputs. Ecol Eng 3:449–468. doi:10.1016/0925-8574(94)00012-3

    Article  Google Scholar 

  • Fisher J, Acreman MC (1999) Wetland nutrient removal: a review of the evidence. Hydrol Earth Syst Sci 8:673–685. doi:10.5194/hess-8-673-2004

    Article  Google Scholar 

  • Fisher MM, Reddy KR (2001) Phosphorus flux from wetland soils affected by long-term nutrient loading. J Environ Qual 30:261–271. doi:10.2134/jeq2001.301261x

    Article  CAS  PubMed  Google Scholar 

  • Gelda RK, Effler SW (2002) Estimating oxygen exchange across the air-water interface of a hypereutrophic lake. Hydrobiologia 487:243–254. doi:10.1023/A:1022994217578

    Article  CAS  Google Scholar 

  • Grimshaw HJ, Wetzel RG, Brandenburg M et al (1997) Shading of periphyton communities by wetland emergent macrophytes: Decoupling of algal photosynthesis from microbial nutrient retention. Arch Hydrobiol 139:17–27

    CAS  Google Scholar 

  • Hagerthey SE, Cole JJ, Kilbane D (2010) Aquatic metabolism in the everglades: dominance of water column heterotrophy. Limnol Oceanogr 55:653–666. doi:10.4319/lo.2009.55.2.0653

    Article  CAS  Google Scholar 

  • Hall CAS, Moll R (1975) Methods of assessing aquatic primary productivity. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, New York, pp 19–53

    Chapter  Google Scholar 

  • Hansson L (1992) The role of food-chain composition and nutrient availability in shaping algal biomass development. Ecology 73:241–247. doi:10.2307/1938735

    Article  Google Scholar 

  • Hartley AM, House WA, Callow ME, Leadbeater BSC (1997) Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae. Water Res 31:2261–2268. doi:10.1016/S0043-1354(97)00103-6

    Article  CAS  Google Scholar 

  • House WA (1990) The prediction of phosphate coprecipitation with calcite in fresh-waters. Water Res 24:1017–1023. doi:10.1016/0043-1354(90)90124-O

    Article  CAS  Google Scholar 

  • International Organization for Standardization (ISO) (1995) ISO 10694:1995 Soil quality – Determination of organic and total carbon after dry combustion. ISO, Geneva

    Google Scholar 

  • International Organization for Standardization (ISO) (1998) ISO 13878:1998 Soil quality –Determination of total nitrogen content by dry combustion. ISO, Geneva

    Google Scholar 

  • Jansson M, Bergstrom A-K, Lymer D, Vrede K, Karlsson J (2006) Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios. Microb Ecol 52:358–364. doi:10.1007/s00248-006-9013-4

    Article  CAS  PubMed  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, Boca Raton

    Google Scholar 

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes - a review. Aquat Bot 72:249–260. doi:10.1016/S0304-3770(01)00204-2

    Article  Google Scholar 

  • Maynard JJ, Dahlgren RA, O’Geen AT (2012) Quantifying spatial variability and biogeochemical controls of ecosystem metabolism in a eutrophic flow-through wetland. Ecol Eng 47:221–236. doi:10.1016/j.ecoleng.2012.06.032

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (1986) Wetlands. VanNostrand Reinhold, New York

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 5th edn. Wiley, Hoboken

    Google Scholar 

  • Mitsch WJ, Kaltenborn KS (1980) Effects of copper sulfate application on diel dissolved oxygen and metabolism in the Fox Chain of Lakes. Trans Illi State Acad Sci 73:5δ5–64

    Google Scholar 

  • Mitsch WJ, Cronk JK, Wu X, Nairn RW, Hey DL (1995) Phosphorus retention in constructed freshwater riparian marshes. Ecol Appl 5:830–845. doi:10.2307/1941991

    Article  Google Scholar 

  • Mitsch WJ, Horne AJ, Nairn RW (2000) Nitrogen and phosphorus retention in wetlands: ecological approaches to solving excess nutrient problems. Ecol Eng 14:1–7. doi:10.1016/S0925-8574(99)00015-4

    Google Scholar 

  • Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L (2009) Wetland ecosystems. Wiley, Hoboken, 295 pp

    Google Scholar 

  • Mitsch WJ, Zhang L, Chung N, Marois D, Song, K, Villa JA (2013) Assessing nutrient removal efficacy and uptake of several native wetland plant communities. Final Report to South Florida Water Management District, Everglades Wetland Research Park, Florida Gulf Coast University, Naples, Florida, 48 pp. + appendices.

  • Mitsch WJ, Zhang L, Waletzko E, Bernal B (2014) Validation of the ecosystem services of created wetlands: two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering 72: 11-24. doi.org/10.1016/j.ecoleng.2014.09.108

  • Mitsch WJ, Zhang L, Marois DE, Song K (2015) Protecting the Florida Everglades wetlands with wetlands: can stormwater phosphorus be reduced to oligotrophic conditions? Ecological Engineering in press doi: 10.1016/j.ecoleng.2014.10.006

  • Newman S, Grace JB, Koebel JW (1996) Effects of nutrients and hydroperiod on typha, cladium, and eleocharis: implications for everglades restoration. Ecol Appl 6:774–783. doi:10.2307/2269482

    Article  Google Scholar 

  • Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the everglades so unique? Ecosystems 4:603–624. doi:10.1007/s10021-001-0032-1

    Article  CAS  Google Scholar 

  • Odum EP (1969) Strategy of ecosystem development. Science 164:262–270. doi:10.1126/science.164.3877.262

    Article  CAS  PubMed  Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1(2):102–117. doi:10.4319/lo.1956.1.2.0102

    Article  Google Scholar 

  • Odum HT, Hoskin CM (1958) Comparative studies on the metabolism of marine waters. Publ Ma Sci Univ Texas 5:16–46

    Google Scholar 

  • Pant HK, Reddy KR (2003) Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Res 37:965–972. doi:10.1016/S0043-1354(02)00474-8

    Article  CAS  PubMed  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5° to 60 ° C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216. doi:10.2475/ajs.278.2.179

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD, DeBusk WF, Koch MS (1993) Long-term nutrient accumulation in the Everglades. (northern Everglades of Florida). Soil Sci Soc Am J 57:1147–1155. doi:10.2136/sssaj1993.03615995005700040044x

    Article  CAS  Google Scholar 

  • Reddy KR, Connor GAO, Gale PM (1998) Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. J Environ Qual 27:438–4473. doi:10.2134/jeq1998.00472425002700020027x

    Article  CAS  Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146. doi:10.1080/10643389991259182

    Article  CAS  Google Scholar 

  • Reeder BC (1994) Estimating the role of autotrophs in nonpoint-source phosphorus retention in a Laurentian Great-Lakes coastal wetland. Ecol Eng 3:161–169. doi:10.1016/0925-8574(94)90043-4

    Article  Google Scholar 

  • Reeder BC (2011) Assessing constructed wetland functional success using diel changes in dissolved oxygen, pH, and temperature in submerged, emergent, and open-water habitats in the Beaver Creek Wetlands Complex, Kentucky (USA). Ecol Eng 37:1772–1778. doi:10.1016/j.ecoleng.2011.06.018

    Article  Google Scholar 

  • South Florida Water Management District (SFWMD) (2013) Annual permit report for the Everglades stormwater treatment areas. 2013 South Florida environmental report. South Florida Water Management District, West Palm Beach, FL.

  • Staehr PA, Bade D, Van de Bogert MC et al (2010) Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr Methods 8:628–644. doi:10.4319/lom.2010.8.628

    Article  CAS  Google Scholar 

  • Talling JF (2010) pH, the CO2 system and freshwater science. Freshw Rev 3:133–146. doi:10.1608/FRJ-3.2.156

    Article  Google Scholar 

  • Tobias CR, Böhlke JK, Harvey JW (2007) The oxygen-18 isotope approach for measuring aquatic metabolism in high productivity waters. Limnol Oceanogr 52:1439–1453. doi:10.4319/lo.2007.52.4.1439

    Article  CAS  Google Scholar 

  • Tuttle CL, Zhang L, Mitsch WJ (2008) Aquatic metabolism as an indicator of the ecological effects of hydrologic pulsing in flow-through wetlands. Ecol Indic 8:795–806. doi:10.1016/j.ecolind.2007.09.005

    Article  Google Scholar 

  • Urban NH, Davis SM, Aumen NG (1993) Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. Aquat Bot 46:203–223. doi:10.1016/0304-3770(93)90002-E

    Article  CAS  Google Scholar 

  • Van de Bogert MC, Carpenter SR, Cole JJ, Pace ML (2007) Assessing pelagic and benthic metabolism using free water measurements. Limnol Oceanogr Methods 5:145–155. doi:10.4319/lom.2007.5.145

    Article  Google Scholar 

  • Venkiteswaran JJ, Schiff SL, Wassenaar LI (2008) Aquatic metabolism and ecosystem health assessment using dissolved O-2 stable isotope diel curves. Ecol Appl 18:965–982. doi:10.1890/07-0491.1

    Article  PubMed  Google Scholar 

  • Villa JA, Mitsch WJ, Song K, Miao SL (2014) Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades. Ecol Eng 71:118–125. doi:10.1016/j.ecoleng.2014.07.011

    Article  Google Scholar 

  • Wahl M (2008) Ecological modulation of environmental stress: interactions between ultraviolet radiation, epibiotic snail embryos, plants and herbivores. J Anim Ecol 77:549–557. doi:10.1111/j.1365-2656.2007.01352.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the South Florida Water Management District contract 4600001988 to The Ohio State University and continued by PO 4500070343 to Florida Gulf Coast University. The authors thank Evan Waletzko and DB Environmental for help with sampling and sample processing, Bob Johnson for designing the mesocosms’ hydraulic system, and the staff at the SFWMD laboratories for their help with lab processing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl E. Marois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marois, D.E., Mitsch, W.J., Song, K. et al. Estimating the Importance of Aquatic Primary Productivity for Phosphorus Retention in Florida Everglades Mesocosms. Wetlands 35, 357–368 (2015). https://doi.org/10.1007/s13157-015-0625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0625-7

Keywords

Navigation