Skip to main content
Log in

Diversity of Desulfobacteriaceae and Overall Activity of Sulfate-Reducing Microorganisms in and Around a Salt pan in a Southern California Coastal Wetland

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Sulfate-reducing bacteria (SRB) are key mediators of anaerobic carbon cycling in coastal salt marsh sediments and have been shown to be important decomposer communities even in hypersaline habitats. Understanding how SRB function in various salt marsh habitats (vegetated, salt pans) is crucial to advancing our knowledge of salt marsh function. We compare overall sulfate reducing activity and the diversity of a subset of SRB (Desulfobacteriaceae) in two hypersaline sediments (salt pan and nearby area with desiccated vegetation) with a regularly inundated control site within the Huntington Beach Wetlands (HBW). Biological activity was quantified using radiotracer studies to measure sulfate reduction rates (SRR) with and without carbon amendment. All sites showed enhanced SRR under carbon amendment, suggesting short-term carbon limitation. Unique communities of Desulfobacteriaceae were found in all three sites with increased incidence of halotolerant genotypes in the salt pan. These findings indicate that, despite reduced anaerobic respiratory activity, highly diverse and functional deltaproteobacterial communities exist in salt pan and surrounding hypersaline habitats in coastal salt marshes in southern California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam P (2002) Saltmarshes in a time of change. Environ Conserv 29:39–61

    Article  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain Chimeras. Appl Environ Microbiol 72:5734–5741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Brandt KK, Vester F, Jensen AN, Ingvorsen K (2001) Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb Ecol 41:1–11

    PubMed  CAS  Google Scholar 

  • Cao Y, Green PG, Holden PA (2008) Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl Environ Microbiol 74:7585–7595

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dahl TE (1990) Wetland losses in the United States 1780’s to 1980’s. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC

    Google Scholar 

  • Darjany L, Whitcraft C, Dillon J (2014) Lignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing. Front Microbiol. doi:10.3389/fmicb.2014.00263

    PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34:W394–W399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devereux R, Hines ME, Stahl DA (1996) S cycling: characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microb Ecol 32:283–292

    Article  PubMed  CAS  Google Scholar 

  • Ewanchuk PJ, Bertness MD (2004) The role of waterlogging in maintaining forb pannes in nothern New England salt marshes. Ecology 85:1568–1574

    Article  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: Evaluation of a single step chromium reduction method. Biogeochemistry 8:205–222

    Article  CAS  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  • Hines ME, Knollmeyer SL, Tugel JB (1989) Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh. Limnol Oceanogr 34:578–590

    Article  CAS  Google Scholar 

  • Hines ME, Evans RS, Genthner BRS, Willis SG, Friedman S, Rooney-Varga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    PubMed  CAS  PubMed Central  Google Scholar 

  • Howarth RW, Teal JM (1979) Sulfate reduction in a New England USA salt marsh. Limnol Oceanogr 24:999–1013

    Article  CAS  Google Scholar 

  • Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201

    Article  Google Scholar 

  • Kalra YP (1996) Soil pH: first soil analysis methods validated by the AOAC International. J For Res 1:61–64

    Article  Google Scholar 

  • Kerkhof L, Scala DJ (2002) Molecular tools for studying biogeochemical cycling in salt marshes molecular studies of bacteria. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, New York, pp 443–468

    Chapter  Google Scholar 

  • King GM (1988) Patterns of sulfate reduction and the sulfur cycle in a South Carolina salt marsh. Limnol Oceanogr 33:376–390

    Article  CAS  Google Scholar 

  • Kjeldsen KU, Jakobsen TF, Glastrup J, Ingvorsen K (2010) Desulfosalsimonas propionicica gen. nov., sp. nov., a halophilic, sulfate-reducing member of the family Desulfobacteraceae isolated from a salt-lake sediment. Int J Syst Evol Microbiol 60:1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF (2004) High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ Microbiol 6:686–698

    Article  PubMed  CAS  Google Scholar 

  • Kostka JE, Roychoudhury A, Van Cappellen P (2002) Rates and controls of anaerobic microbial respiration across spatial and temporal gradients in saltmarsh sediments. Biogeochemistry 60:49–76

    Article  CAS  Google Scholar 

  • Kuever J, Könneke M, Galushko A, Drzyzga O (2001) Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51:171–177

    PubMed  CAS  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Kumar Y, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. Wiley, Hoboken

    Google Scholar 

  • Moseman-Valtierra SM, Johnson R, Zhang R, Qian PY (2009) Differences in cordgrass structure between a mature and developing marsh reflect distinct N2-fixing communities. Wetlands 29:919–930

    Article  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic-relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel-electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  PubMed Central  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923

    Article  PubMed  CAS  Google Scholar 

  • Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26

    Article  CAS  Google Scholar 

  • Pennings SC, Bertness MD (2001) Salt marsh communities. In: Bertness MD, Gaines SD, Hay M (eds) Marine community ecology. Sinauer, Sunderland

    Google Scholar 

  • Pester M, Knorr K-H, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front Microbiol. doi:10.3389/fmicb.2012.00072

    PubMed  PubMed Central  Google Scholar 

  • Porter D, Roychoudhury A, Cowan D (2007) Dissimilatory sulfate reduction in hypersaline coastal pans: Activity across a salinity gradient. Geochim Cosmochim Acta 71:5102–5116

    Article  CAS  Google Scholar 

  • Purdy KJ, Nedwell DB, Embley TM, Takii S (1997) Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol Ecol 24:221–234

    Article  CAS  Google Scholar 

  • Purdy KJ, Embley TM, Nedwell DB (2002) The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Anton Leeuw Int J Gen Mol Microbiol 81:181–187

    Article  CAS  Google Scholar 

  • Rooney-Varga JN, Devereux R, Evans RS, Hines ME (1997) Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 63:3895–3901

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rooney-Varga JN, Genthner BRS, Devereux R, Willis SG, Friedman SD, Hines ME (1998) Phylogenetic and physiological diversity of sulphate-reducing bacteria isolated from a salt marsh sediment. Syst Appl Microbiol 21:557–568

    Article  PubMed  CAS  Google Scholar 

  • Sahm K, MacGregor BJ, Jørgensen BB, Stahl DA (1999) Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ Microbiol 1:65–74

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD (2008) Evaluating different approaches that test whether microbial communities have the same structure. ISME J 2:265–275

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol 77:3219–3226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schubauer JP, Hopkinson CS (1984) Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnol Oceanogr 29:1052–1065

    Article  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sørensen KB, Canfield DE, Oren A (2004) Salinity responses of benthic microbial communities in a Solar Saltern (Eilat, Israel). Appl Environ Microbiol 70:1608–1616

    Article  PubMed  PubMed Central  Google Scholar 

  • Tezuka Y (1966) A Commensalism between the Sulfate-Reducing Bacterium Desulfovibrio desulfuricans and other Heterotrophic Bacteria. Bot Mag 79:174–178

    Article  CAS  Google Scholar 

  • U.S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook, U.S. GPO, Washington, DC

    Google Scholar 

  • Ulrich G, Krumholz L, Suflita J (1997) A rapid and simple method for estimating sulfate reduction activity and quantifying inorganic sulfides. Appl Environ Microbiol 63:1627–1630

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeikus JG (1983) Metabolic communication between biodegradative populations in nature. In: Slater JH, Whittenbury R, Wimpenny JWT (eds) Microbes in their natural environments: 34th Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, pp 423–462

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Huntington Beach Wetland Conservancy and Kristen Bender for allowing us to access the field site and for facilitating our research. We thank Nathan McLain for assistance in depositing sequences in Genbank and Salvador Deniz for his assistance in the laboratory. This research was funded in part by the National Institutes of General Medical Sciences Grant # 5R25GM050089-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse G. Dillon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, K.L., Whitcraft, C.R. & Dillon, J.G. Diversity of Desulfobacteriaceae and Overall Activity of Sulfate-Reducing Microorganisms in and Around a Salt pan in a Southern California Coastal Wetland. Wetlands 34, 969–977 (2014). https://doi.org/10.1007/s13157-014-0560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0560-z

Keywords

Navigation