Skip to main content

Modelling Habitat Distribution of Mediterranean Coastal Wetlands: The Ebro Delta as Case Study

Abstract

Present-day altered distribution of the natural habitats in the Ebro Delta is consequence of intensive human settlement in the last two centuries. We developed spatial predictive models of potential natural wetland habitats of the Ebro Delta based on ecogeographical predictors and presence/pseudo-absence data for each habitat. The independent variables (i.e. elevation, distance from the coast, distance from the river and distance from the inner border) were analysed using Generalized Additive Models (GAMs). Elevation and the distance from the coast appeared as key predictors in most of the coastal habitats (coastal lagoons, sandy environments, Salicornia-type marshes and reed beds), whereas distances from the river and from the inner border were relevant in the most terrestrial or inland habitats (salt meadows, Cladium-type marshes and riparian vegetation). Our findings suggest that the most inland habitats (i.e. Cladium-type marshes, salt meadows and riparian vegetation) would have undergone a severe reduction (higher than 90 %), whereas in the most coastal habitats (coastal lagoons, sandy environments, Salicornia-type marshes) the reduction in relation to their potential distribution would be around 70 %. This modelling approach can be applied to other deltaic areas, since all them share a similar topography.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Álvarez-Rogel J, Carrasco L, Marín C, Martínez-Sánchez J (2007) Soils of a dune coastal salt marsh system in relation to groundwater level, micro-topography and vegetation under a semiarid Mediterranean climate in SE Spain. Catena 69:111–121

    Article  Google Scholar 

  • Austin M (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Bekkby T, Moy FE (2011) Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuar Coast Shelf Sci 95:477–483

    Article  Google Scholar 

  • Bio A, Alkemade R, Barendregt A (1998) Determining alternative models for vegetation response analysis: a non-parametric approach. J Veg Sci 9:5–16

    Article  Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000. European Environment Agency, Copenhagen

    Google Scholar 

  • Cardoch L, Day JW, Ibáñez C (2002) Net primary productivity as an indicator of sustainability in the Ebro and Mississippi deltas. Ecol Appl 12:1044–1055

    Article  Google Scholar 

  • Casanova D, Boixadera J, Llop J (2002) Development and Applications of a Soil Geographic Database: A case study in a deltaic environment under rice cultivation. J Spat Hydrol 2

  • Chefaoui RM, Lobo JM (2008) Assessing the effects of pseudo-absences on predictive distribution model performance. Ecol Model 210:478–486

    Article  Google Scholar 

  • Coleman JM, Huh OK, Braud D Jr (2008) Wetland loss in world deltas. J Coast Res 24:1–14

    Article  Google Scholar 

  • Curcó A, Canicio C, Ibáñez C (1995) Mapa d'hàbitats potencials del Delta de l'Ebre. Butll. Parc Natural Delta Ebre 9:4–12

    Google Scholar 

  • Curcó A, Ibáñez C, Day JW, Prat N (2002) Net primary production and decomposition of salt marshes of the Ebre Delta (Catalonia, Spain). Estuar Coasts 25:309–324

    Article  Google Scholar 

  • Day JW, Pont D, Hensel P, Ibáñez C (1995) Impacts of sea level rise on deltas in the Gulf of Mexico and the Mediterranean: the importance of pulsing events to sustainability. Estuar Coasts 18:636–647

    CAS  Article  Google Scholar 

  • Felicísimo A, Sánchez-Gago L (2002) Thematic and spatial accuracy: a comparison of the Corine Land Cover with the Forestry Map of Spain. 5th AGILE Conference on Geographic Information Science, Palma, Balearic Islands Spain, pp 109–118

  • Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodivers Conserv 11:2275–2307

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hastie T (2012) GAM: Generalized Additive Models. R package version 1.06.2. Available via. http://CRAN.R-project.org/package=gam

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman & Hall/CRC, London

    Google Scholar 

  • Heinanen S, Erola J, von Numers M (2012) High resolution species distribution models of two nesting water bird species: a study of transferability and predictive performance. Landsc Ecol 27:545–555

    Article  Google Scholar 

  • Hijmans R, Phillips J, Leathwick J, Elith J (2011) DISMO. Species distribution modeling. R package version 0.8. Available via. http://CRAN.R-project.org/package=dismo

  • Ibàñez C, Canicio A, Day JW, Curcó A (1997) Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. Journal of Coastal Conservation 3:191--202

  • Ibáñez C, Curcó A, Day JW, Prat N (2000) Structure and Productivity of Microtidal Mediterranean Coastal Marshes. In M. Weinstein and D. Kreeger (eds.), Concepts and Controversies in Tidal Marsh Ecology. Springer Netherlands, pp 107–136

  • Ibáñez C, Sharpe PJ, Day JW, Day JN, Prat N (2010) Vertical accretion and relative sea level rise in the Ebro Delta Wetlands (Catalonia, Spain). Wetlands 30:979–988

    Article  Google Scholar 

  • Ibáñez C, Alcaraz C, Caiola N, Rovira A, Trobajo R, Alonso M, Duran C, Jiménez P, Munné A, Prat N (2011) Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects. Sci Total Environ 416:314–322

    PubMed  Article  Google Scholar 

  • Ibáñez C, Day JW, Reyes E (2013) The response of deltas to sea-level rise: natural mechanisms and management options to adapt to high-end scenarios. Ecological Engineering. Doi:http://dx.doi.org/10.1016/j.ecoleng.2013.08.002.

  • Jiménez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  • Joye DA, Oertli B, Lehmann A, Juge R, Lachavanne JB (2006) The prediction of macrophyte species occurrence in Swiss ponds. In J. M. Caffrey, A. Dutartre, J. Haury, K. M. Murphy and P. M. Wade (eds.), Macrophytes in Aquatic Ecosystems: From Biology to Management. Hydrobiologia, pp 175–182

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Mañosa S, Mateo R, Guitart R (2001) A review of the effects of agricultural and industrial contamination on the Ebro Delta biota and wildlife. Environ Monit Assess 71:187–205

    PubMed  Article  Google Scholar 

  • Martínez-Alonso M, Mir J, Caumette P, Gaju N, Guerrero R, Esteve I (2004) Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. Int Microbiol 7:19–26

    PubMed  Google Scholar 

  • Martínez B, Viejo RM, Carreño F, Aranda SC (2012) Habitat distribution models for intertidal seaweeds: responses to climatic and non-climatic drivers. J Biogeogr 39:1877–1890

    Article  Google Scholar 

  • Nebra A, Caiola N, Ibáñez C (2011) Community structure of benthic macro in vertebrates inhabiting a highly stratified Mediterranean estuary. Sci Mar 75:577–584

    CAS  Article  Google Scholar 

  • Peters J, Verhoest NEC, Samson R, Boeckx P, De Baets B (2008) Wetland vegetation distribution modelling for the identification of constraining environmental variables. Landsc Ecol 23:1049–1065

    Article  Google Scholar 

  • Phillips S, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    PubMed  Article  Google Scholar 

  • Planque B, Bellier E, Lazure P (2007) Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fish Oceanogr 16:16–30

    Article  Google Scholar 

  • Pont D, Day JW, Hensel P, Franquet E, Torre F, Rioual P, Ibáñez C, Coulet E (2002) Response scenarios for the deltaic plain of the Rhône in the face of an acceleration in the rate of sea-level rise with special attention to Salicornia-type environments. Estuar Coasts 25:337–358

    Article  Google Scholar 

  • Prado P, Caiola N, Ibáñez C (2012) Spatio-temporal patterns of submerged macrophytes in three hydrologically altered Mediterranean coastal lagoons. Estuar Coasts 36:414–429

    Article  Google Scholar 

  • Rodrigues-Capítulo A, España A, Ibáñez C, Prat N (1994) Limnology of natural wells in the Ebro Delta (NE Spain). In A. Sladeckova (ed.). International Association of Theoretical and Applied Limnology, Proceedings, pp 1430–1433

    Google Scholar 

  • Rovira L, Trobajo R, Leira M, Ibáñez C (2012a) The effects of hydrological dynamics on benthic diatom community structure in a highly stratified estuary: The case of the Ebro Estuary (Catalonia, Spain). Estuar Coast Shelf Sci 101:1–14

    CAS  Article  Google Scholar 

  • Rovira L, Trobajo R, Ibáñez C (2012b) The use of diatom assemblages as ecological indicators in highly stratified estuaries and evaluation of existing diatom indices. Mar Pollut Bull 64:500–511

    CAS  PubMed  Article  Google Scholar 

  • Sanmartí N, Menéndez M (2007) Litter decomposition of Scirpus maritimus L. in a Mediterranean coastal marsh: Importance of the meiofauna during the initial phases of detached leaves decomposition. Int Rev Hydrobiol 92:211–226

    Article  Google Scholar 

  • Seoane J, Viñuela J, Díaz-Delgado R, Bustamante J (2003) The effects of land use and climate on red kite distribution in the Iberian Peninsula. Biol Conserv 111:401–414

    Article  Google Scholar 

  • Shoutis L, Patten DT, McGlynn B (2010) Terrain-based predictive modeling of riparian vegetation in a Northern Rocky Mountain watershed. Wetlands 30:621–633

    Article  Google Scholar 

  • Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62:119–130

    CAS  Article  Google Scholar 

  • Vigo J, Carreras J (2003) Los hábitats del proyecto CORINE en el ámbito territorial catalán: delimitación y cartografía. Acta Botánica Barcinonensia 49:401–420

    Google Scholar 

  • Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177

    Article  Google Scholar 

  • Zedler JB, Callaway JC, Desmond JS, Vivian-Smith G, Williams GD, Sullivan G, Brewster AE, Bradshaw BK (1999) Californian salt-marsh vegetation: An improved model of spatial pattern. Ecosystems 2:19–35

    Article  Google Scholar 

  • Zucchetta M, Franco A, Torricelli P, Franzoi P (2010) Habitat distribution model for European flounder juveniles in the Venice lagoon. J Sea Res 64:133–144

    Article  Google Scholar 

  • Zuur AF (2012) A beginner's guide to Generalized Additive Models with R. Limited, Highland Statistics

    Google Scholar 

Download references

Acknowledgment

This research was supported by IRTA-URV-Santander fellowship to Xavier Benito Granell through “BRDI Trainee Research Personnel Programme funded by University of Rovira and Virgili R + D + I projects”. The work described in this publication was supported by the European Community’s Seventh Framework Programme through the grant to the budget of the Collaborative Project RISES-AM-, Contract FP7-ENV-2013-two-stage-603396. The Digital Elevation Model is propriety of Cartographic Institute of Catalonia (www.icc.cat). The authors would like to thank to the IRTA technicians Lluís Jornet and David Mateu for field support. We thank also two anonymous reviewers for their constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Benito.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

Location of the study area, the Ebro Delta, and its present-day main habitats. (GIF 257 kb)

(TIFF 295 kb)

Supplementary Fig. S2

Map showing the potential distribution (presence/absence) of natural habitats in the Ebro Delta predicted by the models. The overlap of the habitats have been made on the basis of the explained deviance by the GAM models. (GIF 234 kb)

(TIFF 249 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benito, X., Trobajo, R. & Ibáñez, C. Modelling Habitat Distribution of Mediterranean Coastal Wetlands: The Ebro Delta as Case Study. Wetlands 34, 775–785 (2014). https://doi.org/10.1007/s13157-014-0541-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0541-2

Keywords

  • Predictive modelling
  • Mediterranean wetlands
  • Deltas
  • Generalized additive models
  • Geographic information system