Skip to main content

Advertisement

Log in

Hydrological and Geomorphological Controls on the Water Balance Components of a Mangrove Forest During the Dry Season in the Pacific Coast of Nicaragua

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Hydrological and geomorphological processes are key to mangrove forest growth and development. However, few mangrove hydrology studies exist in Central America. A 0.2 km2 mangrove forest on the Pacific coast of Nicaragua was investigated to determine the water balance dynamics during the dry season. The used multi-methods approach combined hydrology, hydrochemistry and geophysics. Precipitation is the main freshwater input. Beach ridges are the key geomorphologic features which allowed an increase in water storage of 351 m3d−1 during a 22 day period. Large precipitation events cause breaking of the beach ridges by excess water, suddenly emptying the system. Grey water and pit latrines from the nearby town influence shallow groundwater quality, but also provide extra nutrients for the mangrove forest. Groundwater chemistry is also affected by calcite dissolution and seawater. Refreshening and salinization processes are controlled by the general groundwater flow direction. Hydraulic and hydrochemical influence of seawater on coastal piezometers seems to be controlled by the elevation of the water table and the tidal amplitude. These conditions control forest subsistence during the dry season, which is essential for the mangrove forest to provide ecological and economic benefits such as protection against flooding, habitat for numerous species, and tourist attraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alongi DM (2002) Present state and future of the world's mangrove forests. Environ Conserv 29:331–349

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration. Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300:6541

  • Appelo C, Postma D (1993) Geochemistry, groundwater and pollution. AA Balkema, Rotterdam

    Google Scholar 

  • ASTM (1970) Special procedures for testing soil and rock for engineering purposes 5th edition. ASTM International, Maryland

    Book  Google Scholar 

  • Bouwer H, Rice R (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428

    Article  Google Scholar 

  • Briceño H, Miller G, Davis SE (2013) Relating freshwater flow with estuarine water quality in the Southern Everglades mangrove ecotone. Wetlands. doi:10.1007/s13157-013-0430-0:1-11

    Google Scholar 

  • Cahoon DR, Hensel P, Rybczyk J, McKee KL, Proffitt CE, Perez BC (2003) Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J Ecol 91:1093–1105

    Article  Google Scholar 

  • Carvalho F, Montenegro-Guillen S, Villeneuve JP, Cattini C, Bartocci J, Lacayo M, Cruz A (1999) Chlorinated hydrocarbons in coastal lagoons of the Pacific coast of Nicaragua. Arch Environ Contam Toxicol 36:132–139

    Article  CAS  PubMed  Google Scholar 

  • Castañeda-Moya E, Rivera-Monroy VH, Twilley RR (2006) Mangrove zonation in the dry life zone of the Gulf of Fonseca, Honduras. Estuar Coasts 29:751–764

    Google Scholar 

  • CBM (2002) El Corredor Biológico Mesoamericano: Una plataforma para el desarrollo sostenible regional (The Mesoamerican Biological Corridor: a platform for regional sustainable development). Proyecto Corredor biológico mesoamericano

  • CIRA (2008) Disponibilidad actual y futura de los recursos hídricos en la franja costera del municipio de San Juan del Sur (Actual and future water resources availability in the coastal area of the municipality of San Juan del Sur). Centro para la Investigación en Recursos Acuáticos de Nicaragua, Managua, p 103

    Google Scholar 

  • Corredor JE, Morell JM (1994) Nitrate depuration of secondary sewage effluents in mangrove sediments. Estuar Coasts 17:295–300

    Article  CAS  Google Scholar 

  • Dahlin T (1996) 2D resistivity surveying for environmental and engineering applications. First Break 14:275–283

    Google Scholar 

  • Dahlin T, Linderman JE (2007) Software Developed in Cooperation between ABEM. Lund University and Terraohm

  • de Montety V, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhône delta (Southern France). Appl Geochem 23:2337–2349

    Article  Google Scholar 

  • Ellison A (2004) Wetlands of Central America. Wetl Ecol Manag 12:3–55

    Article  Google Scholar 

  • Feller IC, Sitnik M (1996) Mangrove ecology workshop manual. Smithsonian Institution, Washington, DC:135

  • Ferris JG, Knowles D, Brown R, Stallman RW (1962) Theory of aquifer tests. US Geological Survey

  • Fetter C (2001) Applied hydrogeology 4th edition. Prentice Hall Upper Saddle River, New Jersey

    Google Scholar 

  • Fetter CW (1999) Contaminant hydrogeology. Prentice Hall Upper Saddle River, New Jersey

    Google Scholar 

  • Fürst E, Barton DN, Jimenez G (2000) Partial economic valuation of mangroves in Nicaragua In McCracken, JR and Abaza, H (eds.) Environmental valuation: a worldwide compendium of case studies, edn. Earthscan, UK, p 233

    Google Scholar 

  • Ghiglieri G, Carletti A, Pittalis D (2012) Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). J Hydrol 432–433:43–51

    Article  Google Scholar 

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89:237–250

    Article  Google Scholar 

  • Giménez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environ Geol 29:118–131

    Article  Google Scholar 

  • Gondwe BN, Hong S-H, Wdowinski S, Bauer-Gottwein P (2010) Hydrologic dynamics of the ground-water-dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR data. Wetlands 30:1–13

    Article  Google Scholar 

  • Groombridge B (1992) Global biodiversity: status of the earth's living resources. Chapman & Hall

  • Gross J, Flores E, Schwendenmann L (2013) Stand structure and aboveground biomass of a Pelliciera rhizophorae mangrove forest, Gulf of Monitjo Ramsar site, Pacific Coast. Panama Wet lands. doi:10.1007/s13157-013-0482-1:1-11

    Google Scholar 

  • He G, Engel V, Leonard L, Croft A, Childers D, Laas M, Deng Y, Solo-Gabriele H (2010) Factors Controlling Surface Water Flow in a Low-gradient Subtropical Wetland. Wetlands 30:275–286

    Article  Google Scholar 

  • Jeanson M, Anthony E, Dolique F, Cremades C (2014) Mangrove Evolution in Mayotte Island, Indian Ocean: A 60-year Synopsis Based on Aerial Photographs. Wetlands. doi:10.1007/s13157-014-0512-7:1-10

    Google Scholar 

  • Jimenez J (1990) The structure and function of dry weather mangroves on the Pacific Coast of Central America, with emphasis on Avicennia bicolor forests. Estuaries 13:182–192

    Article  Google Scholar 

  • Jimenez J (1992) Mangrove forests of the Pacific coast of Central America. Coastal plant communities of Latin America:259-267

  • Jimenez J, Yañez-Arancibia A, Lara-Domínguez A (1999) Ambiente, distribución y características estructurales en los manglares del Pacífico de Centro América: contrastes climáticos (Environment, distribution and structural characteristics of mangrove forests in Central America: climatic contrasts). In Yañez-Arancibia, A and Lara-Domínguez, A (eds.) Ecosistemas de manglar en América Tropical, 1st edn. Instituto de Ecología, A.C. Centro SEP - CONACYT, Mexico, pp 51-70

  • Keddy PA (2010) Wetland ecology: principles and conservation Second edition. Cambridge University Press, UK

    Book  Google Scholar 

  • Kjerfve B, Lacerda L, Rezende CE, Ovalle ARC (1999) Hydrological and hydrogeochemical variations in mangrove ecosystems. In Yañez-Arancibia, A and Lara-Domínguez, A (eds.) Mangrove ecosystems in tropical America: structure, function and management, 1st edn. Instituto de Ecología, A.C. Centro SEP - CONACYT, Mexico, pp 71-81

  • Krasny J, Hecht G (1998) Estudios hidrogeológicos e hidroquímicos de la Región del Pacífico de Nicaragua (Hydrogeologic and hydrochemical studies of the Pacific Region of Nicaragua). INETER, Managua, p 154

    Google Scholar 

  • Loke M, Barker R (2004) RES2Dinv software. Geotomo Software Company

  • Lovelock C, Feller IC, McKee K, Ball M (2004) The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Funct Ecol 18:25–33

    Article  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588

    Article  Google Scholar 

  • McClain ME, Subalusky AL, Anderson EP, Dessu SB, Melesse AM, Ndomba PM, Mtamba JOD, Tamatamah RA, Mligo C (2013) Comparing flow regime, channel hydraulics and biological communities to infer flow-ecology relationships in the Mara River of Kenya and Tanzania. Hydrol Sci J. doi:10.1080/02626667.2013.853121

    Google Scholar 

  • Perez M, Siria I, Sotelo M, Robleto R (2008) Estudio de pre-factibilidad sobre produccion y comercialización de Anadara tuberculosa y Anadara similis en los manglares del municipio de Tola, Rivas (Pre-factibility study on the production and comercialization of Anadara tuberculosa and Anadara similis in the Tola Mangroves, Rivas). GTZ, Managua, p 55

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5:e10095

    Article  PubMed Central  PubMed  Google Scholar 

  • Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica. Biotropica:195-212

  • Rabinowitz D (1978) Early growth of mangrove seedlings in Panama, and an hypothesis concerning the relationship of dispersal and zonation. Journal of Biogeography:113-133

  • Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30:1148–1160

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Monroy V, Twilley R, Boustany R, Day J, Veraherrera F, Ramirez M (1995) Direct denitrification of mangorve sediments in terminos Lagoon, Mexico. Mar Ecol Prog Ser 126:97–109

    Article  Google Scholar 

  • Roth LC (1992) Hurricanes and mangrove regeneration: effects of Hurricane Joan, October 1988, on the vegetation of Isla del Venado, Bluefields, Nicaragua. Biotropica:375-384

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Springer Netherlands

  • Schumacher M (2007) Formulación e implementación de medidas de conservación de manglares (Design and implementation of conservation actions for mangrove forests). GTZ, Managua, p 51

    Google Scholar 

  • Sherman RE, Fahey TJ, Howarth RW (1998) Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics. Oecologia 115:553–563

    Article  Google Scholar 

  • SINAPRED (2005) Plan de gestion de riesgos. Departamento de Rivas. Municipio de San Juan del Sur. (Risk management plan. Rivas Department. Municipality of San Juan del Sur). pp 102

  • Smith AP, Hogan KP, Idol JR (1992) Spatial and temporal patterns of light and canopy structure in a lowland tropical moist forest. Biotropica:503-511

  • Snedaker SC (1993) Impact on mangroves. In Maul, GA (ed.) Climatic change in the Intra-American Seas: implication of future climate change on the ecosystems and socio-economic structure of the marine regimes of the Caribbean Sea, Gulf of Mexico, Bahamas and NE Coast of S. America, 1st edn., London, pp 282-305

  • Souza Filho PWM, Pardella WR (2002) Recognition of the main geobotanical features along the Bragança mangrove coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 data. Wetl Ecol Manag 10:121–130

  • Spalding M, Blasco F, Field CD (1997) World mangrove atlas. Earthscan, UK

    Google Scholar 

  • Swain F (1966) Bottom sediments of lake Nicaragua and lake Managua, Western Nicaragua. J Sediment Res 36:522–540

    Google Scholar 

  • Thom BG (1967) Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. The Journal of Ecology 55:301–343

    Article  Google Scholar 

  • UNA (2003) Actualización del estado del recurso suelo y capacidad de uso de la tierra del municipio de San Juan del Sur. Universidad Nacional Agraria, Managua, p 44

    Google Scholar 

  • Walraevens K, Van Camp M (2005) Advances in understanding natural groundwater quality controls in coastal aquifers. In Araguas, L, Custodio, E and Manzano, M (eds.) Groundwater and Saline Intrusion. Selected papers from the 18th SWIM meeting., 1st edn. IGGM, Madrid, pp 449-463

  • Weeda R (2011) Hydrogeobiochemistry in a small tropical delta. Master thesis, Vrije Universiteit, Amsterdam

Download references

Acknowledgments

The authors wish to thank the National Autonomous University of Nicaragua (UNAN-Managua) and the Aquatic Resources Research Center (CIRA-UNAN) which granted the first author a study permit to conduct her PhD research. Funding was provided by the Dutch Fellowship Program from Nuffic (www.nuffic.nl) and the International Foundation for Science (IFS). Additionally, the first author’s PhD studies were funded by the Faculty for the Future program (www.facultyforthefuture.net). Geophysical data collection and interpretation were performed in collaboration with Marvin Corriols, PhD fellow at Lund University, Sweden, and Lener Sequeira from the Geology and Geophysics Institute (IGG/CIGEO) at UNAN-Managua. Piezometer drilling was possible thanks to the support from Dr. Dionisio Rodriguez, Director of IGG/CIGEO and field technicians Francisco Vasquez and Walter Espinoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyddy Calderon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderon, H., Weeda, R. & Uhlenbrook, S. Hydrological and Geomorphological Controls on the Water Balance Components of a Mangrove Forest During the Dry Season in the Pacific Coast of Nicaragua. Wetlands 34, 685–697 (2014). https://doi.org/10.1007/s13157-014-0534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-014-0534-1

Keywords

Navigation