Advertisement

Wetlands

, Volume 34, Issue 3, pp 593–602 | Cite as

Spatial Variability of Annual Estimates of Methane Emissions in a Phragmites Australis (Cav.) Trin. ex Steud. Dominated Restored Coastal Brackish Fen

  • Stefan Koch
  • Gerald Jurasinski
  • Franziska Koebsch
  • Marian Koch
  • Stephan Glatzel
Article

Abstract

Methane is a major greenhouse gas with a global warming potential 25 times higher than carbon dioxide over a 100 year time horizon. Determining annual emission estimates, usually specified for different vegetation types under particular land use, requires the use of chamber measurements. These emission estimates may be strongly biased towards the lower or upper end by the spatial arrangement of measurement spots in the ecosystem. Here, we analyze the spatial variability of annual methane emission estimates based on non-steady state closed chamber measurements in pure and mixed stands of Phragmites australis (Cav.) Trin ex Steud. in a restored coastal brackish fen. Annual methane emission estimates per measurement location vary largely between 46 and 1,329 kg ha−1 a−1 CH4 but they do not differ significantly between pure and mixed stands of P. australis. Mantel tests show a significant correlation of distances between spots and the variation in methane emission estimates (p < 0.05). Spatial correlation of water levels and annual methane emission estimates is not significant. Empirical variograms suggest that variance in annual methane emission estimates is not increasing with increasing spatial distance. However, spots that share larger distances may differ considerably in their annual methane emission estimates. At the same time, spots that share smaller distances–though these exceed the distances common to many closed chamber measurement setups–may differ less in their annual methane emission estimates. Thus, a huge part of the natural variation in annual methane emissions in a particular ecosystem or vegetation type may be missed when using the typical clustered arrangement of measurement locations in closed chamber studies. Therefore, we suggest that measurement locations should cover a wide spatial extent to improve the reliability of annual emission estimates per vegetation type and ecosystem, and that the number of measurement locations appropriate should be determined by pre-studies whenever possible.

Keywords

CH4 Peatland Spatial variation Reed Greenhouse gas emissions Shallow lake Rewetting Restoration 

Notes

Acknowledgments

This study was funded by the projects “COMTESS – sustainable land management: Trede-offs in ecosystem services” (funded by the Federal Ministry of Education and Research Germany (BMBF), Framework programme “Research for Sustainable Development” (FONA)). Parts of the study were funded by the German Science Foundation (DFG, JU 2780/4-1).

References

  1. Armstrong J, Armstrong W (1990) Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. Ex Steud. New Phytologist 114:121–128CrossRefGoogle Scholar
  2. Armstrong J, Armstrong W (1991) A convective through-flow of gases in Phragmites australis (Cav.) Trin ex. Steud. Aquatic Botany 39:75–88CrossRefGoogle Scholar
  3. Armstrong J, Armstrong W, Beckett PM, Halder JE, Lythe S, Holt R, Sinclair A (1996) Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav.)Trin. ex Steud. Aquatic Botany 54:177–197CrossRefGoogle Scholar
  4. Askaer L, Elberling B, Friborg T, Jørgensen CJ, Hansen BU (2011) Plant-mediated CH4 transport and C gas dynamics quantified in-situ in a Phalaris arundinacea-dominant wetland. Plant and Soil 343(1–2):287–301CrossRefGoogle Scholar
  5. Augustin J, Chojnicki B (2008) Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach der Wiedervernässung von degradiertem Niedermoorgrünland. In: Gelbrecht J, Zak D, Augustin J (eds) Phosphor- und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern. Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin, pp 50–67Google Scholar
  6. Baird AJ, Stamp I, Heppell CM, Green SM (2010) CH4 flux from peatlands: a new measurement method. Ecohydrology 33:360–367CrossRefGoogle Scholar
  7. Beetz S, Liebersbach H, Glatzel S, Jurasinski G, Buczko U, Höper H (2013) Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog. Biogeosciences 10(2):1067–1082CrossRefGoogle Scholar
  8. Butenhoff CL, Khalil MAK (2007) Global methane emissions from terrestrial plants. Environmental Science and Technology 41(11):4032–4037PubMedCrossRefGoogle Scholar
  9. Clymo RS (1987) The ecology of peatlands. Science Progress (Oxford) 71:593–614Google Scholar
  10. Couwenberg J, Thiele A, Tanneberger F, Augustin J, Bärisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674(1):67–89CrossRefGoogle Scholar
  11. Dias ATC, Hoorens B, Logtestijn RSP, Vermaat JE, Aerts R (2010) Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after land-use changes. Ecosystems 13(4):526–538CrossRefGoogle Scholar
  12. Ding W, Cai Z, Tsuruta H, Li X (2003) Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere 51:167–173PubMedCrossRefGoogle Scholar
  13. Ding W, Cai Z, Tsuruta H (2005) Plant species effects on methane emissions from freshwater marshes. Atmospheric Environment 39(18):3199–3207CrossRefGoogle Scholar
  14. Dowrick DJ, Freeman C, Lock MA, Reynolds B (2006) Sulphate reduction and the suppression of peatland methane emissions following summer drought. Geoderma 132(3–4):384–390CrossRefGoogle Scholar
  15. Dutilleul P, Stockwell D, Frigon D, Legendre P (2000) The Mantel test versus Pearson’s correlation analysis: assessment of the differences for biological and environmental studies. Journal of Agricultural, Biological, and Environmental Statistics 5(2):131–150CrossRefGoogle Scholar
  16. Einax JSU (1995) Geostatistical investigations of polluted soils. Fresenius' Journal of Analytical Chemistry 351:48–53CrossRefGoogle Scholar
  17. Freeman C, Lock MA, Reynolds B (1993) Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: potential feedback to climatic change. Biogeochemistry 19:51–60CrossRefGoogle Scholar
  18. Fritz C, Pancotto VA, Elzenga JTM, Visser EJW, Grootjans AP, Pol A, Iturraspe R, Roelofs JGM, Smolders AJP (2011) Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytologist 190(2):398–408PubMedCrossRefGoogle Scholar
  19. Glatzel S, Well R (2007) Evaluation of septum-capped vials for storage of gas samples during air transport. Environmental Monitoring and Assessment 136(1–3):307–311PubMedCrossRefGoogle Scholar
  20. Günther AB, Huth V, Jurasinski G, Glatzel S (2013) Scale-dependent temporal variation in determining the methane balance of a temperate fen. Greenhouse Gas Measurement and Management:1–8. doi: 10.1080/20430779.2013.850395Google Scholar
  21. Hendriks DMD, van Huissteden J, Dolman AJ, van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411–424CrossRefGoogle Scholar
  22. Hendriks D, van Huissteden J, Dolman A (2010) Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agricultural and Forest Meteorology 150(6):757–774CrossRefGoogle Scholar
  23. Hengl T, Heuvelink GB, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2):75–93CrossRefGoogle Scholar
  24. Herbst M, Prolingheuer N, Graf A, Huisman JA, Weihermüller L, Vanderborght J (2009) Characterization and understanding of bare soil respiration spatial variability at plot scale. Vadose Zone Journal 8(3):762CrossRefGoogle Scholar
  25. Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363(1837):2891–2913CrossRefGoogle Scholar
  26. Imer D, Merbold L, Eugster W, Buchmann N (2013) Temporal and spatial variations of CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences Discussions 10:2635–2673CrossRefGoogle Scholar
  27. Intergovernmental panel of Climate Change (2007) Climate change 2007: the physical science basis. IPCC, GeneveCrossRefGoogle Scholar
  28. Joabsson A, Christensen TR, Wallen B (1999) Vascular plant controls on methane emissions from northern peat forming wetlands. Tree 14(10):385–389PubMedGoogle Scholar
  29. Jordan A, Jurasinski G, Glatzel S (2009) Small scale spatial heterogeneity of soil respiration in an old growth temperate deciduous forest. Biogeosciences Discussions 6:9977–10005CrossRefGoogle Scholar
  30. Jungkunst H, Fiedler S (2007) Latitudinal differentiated water table control of carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils: feedbacks to climate change. Global Change Biology 13(12):2668–2683CrossRefGoogle Scholar
  31. Jurasinski G, Koebsch F, Hagemann U, Günther A (2013) flux: Flux rate calculation from closed chamber measurements. R package version 0.2-2. http://www.r-project.org
  32. Kayranli B, Scholz M, Mustafa A, Hedmark Å (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30(1):111–124CrossRefGoogle Scholar
  33. Kim D, Vargas R, Bond-Lamberty B, Turetsky MR (2012) Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9(7):2459–2483CrossRefGoogle Scholar
  34. Koebsch F, Glatzel S, Jurasinski G (2013) Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management. doi: 10.1007/s11273-013-9304-8 Google Scholar
  35. Kumar JIN, Viyol S (2009) Short term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Journal of Environmental Biology 30(2):241–246PubMedGoogle Scholar
  36. Kutzbach L, Wagner D, Pfeiffer E (2004) Effect of micro relief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. Biogeochemistry 69:341–362CrossRefGoogle Scholar
  37. Lark RM (2002) Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood. Geoderma 105:49–80CrossRefGoogle Scholar
  38. Legendre P, Fortin M (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources 10(5):831–844PubMedCrossRefGoogle Scholar
  39. Levy PE, Burden A, Cooper MDA, Dinsmore KJ, Drewer J, Evans C, Fowler D, Gaiawyn J, Gray A, Jones SK, Jones T, McNamara NP, Mills R, Ostle N, Sheppard LJ, Skiba U, Sowerby A, Ward SE, Zieliński P (2012) Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology 18(5):1657–1669CrossRefGoogle Scholar
  40. Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: application and source of errors. In: Biogenic trace gases: measuring emissions from soil and water. Blackwell, Oxford, pp 14–51Google Scholar
  41. Long KD, Flanagan LB, Cai T (2009) Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance. Global Change Biology 16:2420–2435Google Scholar
  42. Mantel N (1967) Thedetection of disease clustering and a generalized regression approach. Cancer Research 27:209–220PubMedGoogle Scholar
  43. Miao Y, Song C, Sun L, Wang X, Meng H, Mao R (2012) Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences 9(11):4455–4464CrossRefGoogle Scholar
  44. Moore TR, Knowles R (1990) Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11:45–61CrossRefGoogle Scholar
  45. Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31(5):831–842CrossRefGoogle Scholar
  46. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/ Google Scholar
  47. Schäfer C, Elsgaard L, Hoffmann CC, Petersen SO (2012) Seasonal methane dynamics in three temperate grasslands on peat. Plant and Soil 357(1–2):339–353CrossRefGoogle Scholar
  48. Schoenfeld-Bockholdt R, Roth D, Dittman L (2005) Friends of the natural history in Mecklenburg. Ch. Teilflächenbezogene ökologische und futterwirtschaftliche Beurteilung des Grünlandes im Naturschutzgebiet Heiligensee und HütelmoorGoogle Scholar
  49. Schrier-Uijl AP, Veenendaal EM, Leffelaar PA, van Huissteden JC, Berendse F (2008) Spatial and temporal variation of methane emissions in drained eutrophic peat agro-ecosystems: drainage ditches as emission hotspots. Biogeosciences Discussions 5:1237–1261CrossRefGoogle Scholar
  50. Schrier-Uijl AP, Kroon PS, Hensen A, Leffelaar PA, Berendse F, Veenendaal EM (2010) Comparison of chamber and eddy covariance-based CO2 and CH4 emission estimates in a heterogeneous grass ecosystem on peat. Agricultural and Forest Meteorology 150(6):825–831CrossRefGoogle Scholar
  51. Sha C, Mitsch WJ, Mander Ü, Lu J, Batson J, Zhang L, He W (2011) Methane emissions from freshwater riverine wetlands. Ecological Engineering 37(1):16–24CrossRefGoogle Scholar
  52. Smith KA, Clayton H, Arah JRM, Christensen S, Ambus P, Fowler D, Hargreaves KJ, Skiba U, Harris GW, Wienhold FG, Klemedtsson L, Galle B (1994) Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere: overview and conclusions. Journal of Geophysical Research 99(D8):16541–16548CrossRefGoogle Scholar
  53. Strack M, Waddington JM, Tuittila E (2004) Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochemical Cycles 18(GB4003):1–7Google Scholar
  54. Teh YA, Silver WL, Sonnentag O, Detto M, Kelly M, Baldocchi DD (2011) Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems 14(2):311–325CrossRefGoogle Scholar
  55. Varadharajan C, Hemond HF (2012) Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake. Journal of Geophysical Research 117(G2). doi:10.1029/2011JG001866Google Scholar
  56. von Post L (1922) Sveriges Geologiska Undersöknings torvinventering och några av dess hittills vunna resultat. Svenska Mosskulturföreningens Tidskrift 37:1–27Google Scholar
  57. Watson A, Nedwell DB (1998) Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain. Atmospheric Environment 32(19):3239–3245CrossRefGoogle Scholar
  58. Wilson D, Alm J, Laine J, Byrne KA, Farrell EP, Tuittila E (2009) Rewetting of cutaway peatlands: Are we re-creating hot spots of methane emissions? Restoration Ecology 17(6):796–806CrossRefGoogle Scholar
  59. Yamulki S, Anderson R, Peace A, Morison JIL (2012) Soil CO2, CH4, and N2O fluxes from an afforested lowland raised peat bog in Scotland: implications for drainage and restoration. Biogeosciences Discussions 9(6):7313–7351CrossRefGoogle Scholar
  60. Zhao Y, Wu BF, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 10(2):1219–1230CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2014

Authors and Affiliations

  • Stefan Koch
    • 1
  • Gerald Jurasinski
    • 1
  • Franziska Koebsch
    • 1
  • Marian Koch
    • 1
  • Stephan Glatzel
    • 1
  1. 1.Universität Rostock, Agrar- und Umweltwissenschaftliche FakultätRostockGermany

Personalised recommendations