Skip to main content

Advertisement

Log in

Intra-Annual Variation of Modern Foraminiferal Assemblage in a Tropical Mangrove Ecosystem in India

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

This study relates the abundance of foraminifera with the fluctuations in hydrobiological characteristics generated by the monsoonal cycle in a tropical mangrove ecosystem. Monthly variation of physicochemical properties of water and sediment, phytoplankton production, foraminiferal assemblages were measured in the littoral zone of the Sundarbans mangrove forest. Intra-annual variation of foraminifera exhibited a maximum abundance during the post-monsoon period and out of the 25 genera, numbers of calcareous and agglutinated forms were 16 and 9, respectively. Live benthic foraminifera were found to inhabit a wide range of sediment depths and inhabiting a high energy environment their abundance was not restricted to the uppermost centimeter. Owing to mechanical damage (due to high energy system), chemical dissolution and intense bioturbation, the taphonomic processes in this mangrove swamp could result in the destruction of the small size fraction of foraminifera, including agglutinated tests. The low numbers of agglutinated foram could be due to silty clay substrate. Abundance of more calcareous dead specimens over live ones could be attributed to predation and transportation of dead marine species. Most of the marine species could not survive in this freshwater dominated system. Anthropogenic nutrient input and diatom bloom in association with enhanced food to benthos are important controlling factors on foraminiferal abundance and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi DM (2009) The energetics of mangrove forests, 1st edn. Springer, Dordrecht, p 18

  • Alongi DM, Tirendi F, Clough BF (2000) Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquatic Botany 68:97–122

    Article  Google Scholar 

  • Alory G, Wijffels S, Myers G (2007) Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophysical Research Letters 34:L02606. doi:10.1029/2006GL028044

    Article  Google Scholar 

  • Alve E (1995) Benthic foraminiferal responses to estuarine pollution. Journal of Foraminifeal Research 25:190–203

    Article  Google Scholar 

  • Alve E (2003) A common opportunistic foraminiferal species as an indicator of rapidly changing condition in a range of environments. Estuarine, Coastal and Shelf Science 57:501–514

    Article  Google Scholar 

  • Alve E, Murray JW (2001) Temporal variability in vertical distributions of live (stained) intertidal foraminifera, southern England. Journal of Foraminifeal Research 31:12–24

    Article  Google Scholar 

  • Alve E, Nagy J (1986) Estuarine foraminiferal distribution in Sandebukta, a branch of the Oslo fjord. Journal of Foraminifeal Research 16:261–284

    Article  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC, pp 5–15

  • Badylak S, Philips EJ (2004) Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research 6:1229–1247

    Article  Google Scholar 

  • Banerjee K, Senthilkumar B, Purvaja R, Ramesh R (2011) Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, northeast coast of India. Environmental Geochemistry and Health. doi:10.1007/s10653-011-9388-0

  • Barker RW (1960) Taxonomic notes, society of economic paleontologists and mineralogists. Vol. 9. Tusla, Oklanoma: Special Publication, pp. 238

  • Berkeley A, Perry CT, Smithers SG, Horton BP (2008) The spatial and vertical distribution of living (stained) benthic foraminifera from a tropical intertidal environment, north Queensland, Australia. Marine Micropaleontology 9:240–261

    Article  Google Scholar 

  • Bhattathiri PMA (2001) Features at some significant Estuaries of India. In: Sengupta R, Desa E (eds) The Indian ocean- a perspective, vol.1. Oxford and IBH Publishing Co. Pvt. Ltd, Kolkata, pp 271–297

    Google Scholar 

  • Billen G, Lancelot C, Meybeck M (1991) N, P, and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC, Martin JM, Wollast R (eds) Ocean margin processes in global change. Wiley, New York, pp 19–44

    Google Scholar 

  • Biswas H, Mukhopadhyay SK, De TK, Sen S, Jana TK (2004) Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnology and Oceanography 49:95–101

    Article  CAS  Google Scholar 

  • Biswas H, Mukhopadhyay SK, Sen S, Jana TK (2007) Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India. Journal of Marine Systems 68:55–64

    Article  Google Scholar 

  • Canuel EA, Martens CS (1993) Seasonal variability in the sources and alteration of organic matter associated with recently deposited sediments. Organic Geochemistry 20(5):563–577

    Article  CAS  Google Scholar 

  • Chatterjee A, Dutta C, Sen S, Ghosh K, Biswas N, Ganguly D, Jana TK (2006) Formation, transformation, and removal of aerosol over a tropical mangrove forest. Journal of Geophysical Research 111:D24302. doi:10.1029/2006JD007144,2006

    Article  Google Scholar 

  • Cortner JB, Johenger TJ, Biddanda BA (2000) Intense winter heterotrophic production stimulated by benthic resuspension. Limnology and Oceanography 45:1672–1676

    Article  Google Scholar 

  • Culkin F, Cox RA (1976) Sodium, potassium, magnesium, calcium and strontium in sea water. Deep Sea Research 13:789

    Google Scholar 

  • Culver SJ (1990) Benthic foraminifera of Puerto Rican Mangrove- Lagoon systems: potential for paleoenvioronmental interpretation. Palaios 5(1):34–51

    Article  Google Scholar 

  • de Rijk S (1995) Salinity control on the distribution of salt marsh foraminifera (Great Marshes, Massachusetts). Journal of Foraminiferal Research 25:156–166

    Article  Google Scholar 

  • Debenay JP, Guiral D, Parra M (2002) Ecological factors acting on the microfauna in mangrove swamps the case of foraminiferal assemblages in French Guiana. Estuarine, Coastal and Shelf Science 55:509–533

    Article  Google Scholar 

  • Debenay JP, Guiral D, Parra M (2004) Behavior and taphonomic loss in foraminiferal assemblages of mangrove swamps of French Guiana. Marine Geology 208(2–4):295–314

    Article  Google Scholar 

  • Diz P, Frances G, Costas S, Souto C, Alejo I (2004) Distribution of benthic foraminifera in coarse sediments, Ria De Vigo, NW Iberian margin. Journal of Foraminiferal Research 34(4):258–275

    Article  Google Scholar 

  • Ganguly D, Dey M, Mandal SK, De TK, Jana TK (2008) Energy dynamics and its implication to biosphere-atmosphere exchange of CO2, H2O and CH4 in a tropical mangrove forest canopy. Atmospheric Environment 42:4172–4184

    Article  CAS  Google Scholar 

  • Geslin E, Heinz P, Jorissen F, Hemleben C (2004) Migratory responses of deep-sea benthic foraminifera to variable oxygen conditions: laboratory investigations. Marine Micropaleontology 53:227–243

    Article  Google Scholar 

  • Ghosh A, Saha S, Saraswati PK, Banerjee S, Burley S (2008) Intertidal foraminifera in the macro-tidal estuaries of the Gulf of Cambay: implications for interpreting sea-level change in palaeo-estuaries. Marine and Petroleum Geology. doi:10.1016/j.marpetgeo.2008.08.002

  • Goldstein ST, Watkins GT (1999) Taphonomy of salt marsh foraminifera: an example from coastal Georgia. Palaeogeography, Palaeoclimatology, Palaeoecology 149:103–114

    Article  Google Scholar 

  • Gooday AJ, Hughes JA (2002) Foraminifera associated with phytodetritus deposits at a bathyal site in the northern Rockall Trough (NE Atlantic): seasonal contrasts and a comparison of stained and dead assemblages. Marine Micropaleontology 46:83–110

    Article  Google Scholar 

  • Gordon Jr DC, Boudreau PR, Mann KH, Ong JE, Silvert WL, Smith SV, Wattayakom G, Wulf F, Yanagi T (1996) LOICZ biogeochemical modeling guidelines, LOICZ, reports and studies, 51–96

  • Grasshoff K (1983) Determination of salinity and oxygen. In: Grasshoff K, Ehrhard M, Kremling K (eds) Methods of seawater analysis. pp. 1–72. Determination of nutrients. pp. 125–187, New York, Verlag Chemie

  • Green AM, Aller CR, Aller YJ (1993) Carbonate dissolution and temporal abundance of Foraminifera in Long Island sound sediments. Limnology and Oceanography 38(2):331–345

    Article  CAS  Google Scholar 

  • Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(23):354–357

    Article  PubMed  CAS  Google Scholar 

  • Halfar J, Ingle JC (2003) Modern warm–temperate and subtropical shallow water benthic foraminifera of the southern Gulf of California, Mexico. Journal of Foraminiferal Research 33:309–329

    Article  Google Scholar 

  • Hayward BW, Holzmann M, Grenfell HR, Pawowski J, Triggs CM (2004) Morphological distinction of molecular types in Ammonia- towards a taxonomic revision of the world’s most commonly misidentified foraminifera. Marine Micropaleontology 50:218–232

    Article  Google Scholar 

  • Heinz P, Hemleben C (2003) Regional and seasonal variations of recent benthic deep-sea foraminifera in the Arabian, Sea. Deep-Sea Research I 50:435–447

    Article  Google Scholar 

  • Hippensteel SP, Martin RE, Nikitina D, Pizzuto JE (2002) Inter-annual variation of marsh foraminiferal assemblages (Bombay Hook National Wildlife Refuge, Smyrna, DE: do foraminiferal assemblages have a memory? Journal of Foraminiferal Research 32:97–109

    Article  Google Scholar 

  • Irina A, Ellen T, Johan CV, Brink BT, Marilyn R (2002) Benthic foraminifera in Long Island sound as indicators of eutrophication. Denver Annual Meeting (October 27–30, 2002) Micropaleontological Applications to Problems of Urbanization. Colorado Convention Center: A111/109, Session No. 171, paper 171–1

  • Jonathan M, Ram Mohan V (2003) Heavy metals in sediments of the inner shelf off the Gulf of Mannar, S-E Coast of India. Marine Pollution Bulletin 4:258–268

    Google Scholar 

  • Keller PE, Paulson SA, Paulson LJ (1980) Methods for biological, chemical and physical analysis in reservoirs. Technical Report 5, Lake Mead Limnological Res. Centre, Univ. Nevada

  • Kitazato H, Ohga T (1995) Seasonal changes in deep-sea benthic foraminiferal populations: results of long-term observations at Sagami Bay, Japan. In: Sakai H, Nozaki Y (eds) Biogeochemical processes and ocean flux studies in the Western Pacific. Terra Scientic, Tokyo, pp 331–342

    Google Scholar 

  • Kitazato H et al (2000) Seasonal phytodetritus deposition and responses of bathyal benthic foraminiferal populations in Sagami Bay, Japan: preliminary results from ‘Project Sagami 1996–1999’. Marine Micropaleontology 40:135–149

    Article  Google Scholar 

  • Koho KA, Langezaal AM, VanLith YA, Duijnstee IAP, Zwaan GJV (2008) The influence of a simulated diatom bloom on deep sea benthic foraminifera and the activity of bacteria: a mesocosm study. Deep Sea Research I 55:696–719

    Article  Google Scholar 

  • Kumar SR (1996) Distribution of organic carbon in the sediments of Cochin mangroves, South West coast of India. Indian Journal of Marine Science 25:274–276

    CAS  Google Scholar 

  • Lalli CM, Parsons TR (1993) Biological oceanography: an introduction. Pergamon Press, Oxford, p 64

    Google Scholar 

  • Langer RM, Lipps HJ (2006) Assembly and persistence of foraminifera in introduced mangrove on Moorea, French Polynesia. Micropaleontology 52:343–355

    Article  Google Scholar 

  • Le Cadre V, Debenay JP, Lesourd M (2003) Low pH effects on Ammonia beccarii test deformation: implications for using test deformations as a pollution indicator. Journal of Foraminiferal Research 33:1–9

    Article  Google Scholar 

  • Lerman A (1979) Geochemical processes, water and sediment environment. Wiley, New York, p 107

    Google Scholar 

  • Licari LN, Schumachen S, Wenghoffer R, Zabel M, Mackensen A (2003) Communities and microhabitats of living benthic foraminifera from the tropical east Atlantic impact of different productivity regimes. Journal of Foraminiferal Research 33:10–31

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1988) Foraminiferal Genera and their classification. Van Nostrand Reinhold, New York, p 715

    Google Scholar 

  • Lyimo TJ, Pol A, Op den Camp HJM, Harhangi HR, Vogels GD (2000) Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. International Journal of Systematic and Evolutionary Microbiology 50:171–178

    Article  PubMed  CAS  Google Scholar 

  • Mandal SK, Dey M, Ganguly D, Sen S, Jana TK (2009) Biogeochemical controls of arsenic occurrence and mobility in the Indian Sundarban mangrove ecosystem. Marine Pollution Bulletin 58:652–657

    Article  PubMed  CAS  Google Scholar 

  • Martin RE, Harris MS, Liddell WD (1995) Taphonomy and time-averaging of foraminiferal assemblages in Holocene tidal flat sediments, Bahia la Choya, Sonora, Mexico (northern Gulf of California). Marine Micropaleontology 26(1–4):187–206

    Article  Google Scholar 

  • Matty JM, Long DT (1995) Early diagenesis of mercury in the Laurentian Great Lakes. Journal of Great Lakes Research 21:574–586

    Article  CAS  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen and phosphorous import by world rivers. American Journal of Science 282:401–405

    Article  CAS  Google Scholar 

  • Mukhopadhyay SK, Biswas H, De TK, Jana TK (2006) Fluxes of nutrients from the tropical River Hooghly at the land-ocean boundary of Sundarbans, NE Coast of Bay of Bengal. Indian Journal of Marine System 62:9–21

    Article  Google Scholar 

  • Murray JW (2006) Ecology and application of benthic foraminifera, 1st edn. Cambridge University Press, New York, p 64

  • Murray JW, Alve E (1999) Natural dissolution of modern shallow water benthic foraminifera: taphonomic effects on the palaeoecological record. Palaeogeography, Palaeoclimatology, Palaeoecology 146:195–209

    Article  Google Scholar 

  • Murray JW, Alve E (2000) Major aspects of foraminiferal variability (standing crop and biomass) on a monthly scale in an intertidal zone. Journal of Foraminiferal Research 30:177–191

    Article  Google Scholar 

  • Murray JW, Browser SS (2000) Mortality, protoplasm decay rate and the reliability of staining techniques to recognize ‘living’ foraminifera: a review. Journal of Foraminiferal Research 30:66–70

    Article  Google Scholar 

  • Murray JW, Browser SS, Alve E, Cundy A (2003) The origin of modern agglutinated foraminiferal assemblages: evidence from a stratified fjord. Estuarine, Coastal and Shelf Science 58:677–697

    Article  CAS  Google Scholar 

  • Neil H, Cooke P, Northcote L (2005) The life and death of planktonic foraminifera. Water and Atmosphere 13:18–19

    Google Scholar 

  • Nigam R, Chaturvedi SK (2000) Foraminiferal study from Kharo creek, Kachchh (Gujrat), north-west coast of India. Indian Journal of Marine Science 29:133–138

    Google Scholar 

  • Ozarko DL, Patterson RT, Williams HFL (1997) Marsh foraminifera from Nanaimo, British Columbia (Canada): implications of infaunal habitat and taphonomic biasing. Journal of Foraminiferal Research 27(1):51–68

    Article  Google Scholar 

  • Pahlow M, Riebesell U (2001) Temporal trends in deep ocean Redfield ratios. Science 287:831–833

    Article  Google Scholar 

  • Piper CS (1950) Soil and plant analysis. Inter Science Publishers, New York, p 67

    Google Scholar 

  • Pradeep Ram AS, Nair S, Chandramohon D (2003) Seasonal shift in net ecosystem production in a tropical estuary. Limnology and Oceanography 48:1601–1607

    Article  Google Scholar 

  • Ray R, Ganguly D, Chowdhury C, Dey M, Das S, Dutta MK, Mandal SK, Majumder N, De TK, Mukhopadhyay SK, Jana TK (2011) Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment. doi:10.1016/j.atmosenv.2011.04.074

  • Richardson SL (2006) Response of epiphytic foraminiferal communities to natural eutrophication in seagrass habitats off Man O/War Cay, Belize. Marine Ecology 27:404–416

    Article  Google Scholar 

  • Riley JP, Chester R (1971) Introduction to marine chemistry. Academic, London and New York, pp 80–84

    Google Scholar 

  • Roemmich D, McGowan J (1995) Climatic warming and the decline of zooplankton in the California current. Science 267:1324–1326

    Article  PubMed  CAS  Google Scholar 

  • Saffert H, Thomas E (1998) Living foraminifera and total populations in salt marsh peat cores: Kelsey Marsh (Clinton, CT) and The Great Marshes (Barnstaple, MA). Marine Micropaleontology 33:175–202

    Article  Google Scholar 

  • Saraswat R, Khare N, Chaturvedi SK, Rajakumar A (2007) Sea-water pH and planktonic foraminiferal abundance: preliminary observations from the western Indian Ocean. Current Science India 93:703–706

    Google Scholar 

  • Sarma VVSS, Gupta SNM, Babu PVR, Acharya T, Harikrishnachari N, Vishnuvardhan K, Rao NS, Reddy NPC, Sarma VV, Sadhuram Y, Murty TVR, Kumar MD (2009) Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuarine, Coastal and Shelf Science 85:515–524

    Article  CAS  Google Scholar 

  • Sarma VVSS, Prasad VR, Kumar BSK, Rajeev K, Devi BMM, Reddy NPC, Sarma VV, Kumar MD (2010) Intra-annual variability in nutrient in the Godavari estuary, India. Continental Shelf Research 30:2005–2014

    Article  Google Scholar 

  • Schonfeld DJ, Numberger L (2007) The benthic foraminiferal response to the 2004 spring bloom in the western Baltic Sea. Marine Micropaleontology 65:78–95

    Article  Google Scholar 

  • Seitzinger SP, Harrison JA, Dumont F, Bensen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen and phosphorous to the coastal zone: an overview of global nutrient export from watersheds (NEWS) models and their application. Global Biogeochemical Cycles 19:GB4S01. doi:10.1029/2005GB002606

    Article  Google Scholar 

  • Shrawat KL (1982) Simple modification of the Walkley-Black method for simultaneous determination of organic carbon and potentially mineralizable nitrogen in tropical rice soils. Plant and Soil 69:73–77

    Article  Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JG (1996) Trends in European forests. European forest institute research, report 5. Springer, Berlin, p 372

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada, Ottawa, Canada, Bulletin 167

  • Valdes-Weaver LM, Piehler MF, Pinckney JL, Howe KE, Rossignol K, Paed HW (2006) Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuso-Pamlico estuarine continuum, North Carolina, U.S.A. Limnology and Oceanography 51(3):1410–1420

    Article  Google Scholar 

  • Vischer PT, Beukema J, van Gemerden H (1991) In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnology and Oceanography 36:1476–1480

    Article  Google Scholar 

  • Wang P, Chappell J (2001) Foraminifera as Holocene environmental indicators in the South Alligator River, Northern Australia. Quaternary International 83–85:47–62

    Article  Google Scholar 

  • Woodroffe SA, Horton BP, Larcombe P, Whittaker JE (2005) Intertidal mangrove foraminifera from the central Great Barrier Reef Shelf, Australia: implications for sea-level reconstruction. Journal of Foraminiferal Research 35(3):259–270

    Article  Google Scholar 

  • Xu X, Yamasaki M, Oda M, Honda MC (2005) Comparison of seasonal flux variations of planktonic foraminifera in sediment traps on both sides of the Ryukyu Island, Japan. Marine Micropaleontology 58:45–55

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to the Department of Science and Technology, New Delhi, for providing financial assistance. Thanks are also due to the Sundarbans Biosphere Reserve and Divisional Forest Office, government of West Bengal, for giving permission to carry out the experiments. The authors are also grateful to Dr. A. Lahiri, Geological Survey of India, Salt Lake, Kolkata for his generous help. Journal Editor, Associate Editor and Peer reviewer, Dr. Jessica Reeves are thanked for their constructive comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Jana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, M., Ganguly, D., Chowdhury, C. et al. Intra-Annual Variation of Modern Foraminiferal Assemblage in a Tropical Mangrove Ecosystem in India. Wetlands 32, 813–826 (2012). https://doi.org/10.1007/s13157-012-0312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-012-0312-x

Keywords

Navigation