Skip to main content

Advertisement

Log in

A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands

  • Featured Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Our estimates indicate that about 30% of the seven million square kilometers that make up the Amazon basin comply with international criteria for wetland definition. Most countries sharing the Amazon basin have signed the Ramsar Convention on Wetlands of International Importance but still lack complete wetland inventories, classification systems, and management plans. Amazonian wetlands vary considerably with respect to hydrology, water and soil fertility, vegetation cover, diversity of plant and animal species, and primary and secondary productivity. They also play important roles in the hydrology and biogeochemical cycles of the basin. Here, we propose a classification system for large Amazonian wetland types based on climatic, hydrological, hydrochemical, and botanical parameters. The classification scheme divides natural wetlands into one group with rather stable water levels and another with oscillating water levels. These groups are subdivided into 14 major wetland types. The types are characterized and their distributions and extents are mapped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Pérez MHS, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403–413

    Google Scholar 

  • Adeney JM (2009) Remote Sensing of Fire, Flooding and White Sand Ecosystems in the Amazon. Doctoral Dissertation; Nicholas School of the Environment, Duke University, Durham NC, U.S.A.

  • Adeney JM, Christensen NL Jr, Pimm SL (2009) Reserves Protect Against Deforestation Fires In The Amazon. PloS One 4(4):e5014. doi:10.1371/journal.pone.0005014

    PubMed  Google Scholar 

  • Adis J, Junk WJ (2002) Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biology 47:711–731

    Google Scholar 

  • Alonso JA, Whitney BM (2001) A new Zimmerius Tyrannulet (Aves: Tyrannidae) from white sand forests of Northern Amazonian Peru. The Wilson Bulletin 113:1–9

    Google Scholar 

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13:199–210

    Google Scholar 

  • Bleackley D, Khan EJA (1963) Observations on the white-sand areas of the Berbice formation, British Guiana. European Journal of Soil Science 14:44–51

    Google Scholar 

  • Bongers F, Engelen D, Klinge H (1985) Phytomass structure of natural plant-communities on spodosols in southern Venezuela - the bana woodland. Vegetatio 63:13–34

    Google Scholar 

  • Brinson, MM (1993a) A hydrogeomorphic classification for wetlands. Technical Report WRP-DE-4. US Army Corps of EngineersWaterways Experiment Station, Vicksburg, MS

  • Brinson MM (1993b) Changes in the functioning of wetlands along environmental gradients. Wetlands 13:65–74

    Google Scholar 

  • Brinson MM (2009) The United States HGM (hydrogeomorphic) approach. In: Maltby E, Barker T (eds) The wetlands handbook. Blackwell, Oxford, pp 486–512

    Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environmental Conservation 29:115–133

    Google Scholar 

  • Campbell DG, Stone JL, Rosas A (1992) A comparison of the phytosociology and dynamics of three floodplain (Várzea) forests of known ages, Rio Juruá, western Brazilian Amazon. Biological Journal of the Linnean Society 108:213–237

    Google Scholar 

  • Coomes DA, Grubb PJ (1996) Amazonian caatinga and related communities at La Esmeralda, Venezuela: forest structure, physiognomy and floristics, and control by soil factors. Vegetatio 122:167–191

    Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C., 131 pp

    Google Scholar 

  • Diegues ACS (1994) An inventory of Brazilian wetlands. IUCN – The World Conservation Union, Gland, 216 pp

    Google Scholar 

  • Diegues ACS (2002) Povos e Águas. Núcleo de Apoio à Pesquisa sobre Populações Humanas e Áreas Úmidas Brasileiras, 2a. ed., São Paulo, Brazil, 597 pp

  • Eiten G (1983) Classificação da vegetação do Brasil. CNPq, Brasília, 305 pp

    Google Scholar 

  • Falesi IC, Rodrigues T.E., Morikawa I.K., Reis R.S. (1971) Solos do distrito agropecuário da SUFRAMA (trecho km 30 – km 79 Rod. BR 174) Instituto de Pesquisas e Experimentação agropecuária da Amazônia Ocidental (IPEAAOc), Serie Solos I, 99 pp

  • FAO (2007) The world’s mangroves 1980–2005. FAO Forestry Paper 153, Rome, 77 pp

  • Ferreira E, Zuanon J, Forsberg B, Goulding M, Briglia-Ferreira S R (2007) Rio Branco: Peixes, ecologia e conservação de Roraima. Amazon Conservation Association (ACA), Istituto Nacional de Pesquisas da Amazonia (INPA), Sociedade Civil Mamiraua, 201 pp

  • Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, Saaksjarvi I, Schultz LC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:150–162

    Google Scholar 

  • Finlayson CM, van der Valk AG (1995) Wetland classification and inventory: a summary. Vegetatio 118:185–192

    Google Scholar 

  • Fonseca SF, Piedade MTF, Schöngart J (2009) Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees – Structure and Function 23(1):127–134

    Google Scholar 

  • Franco W, Dezzeo N (1994) Soils and soil-water regime in the terra-firme-caatinga forest complex near San Carlos de Rio Negro, state of Amazonas, Venezuela. Interciencia 19:305–316

    Google Scholar 

  • Furch K (1986) Hydrogeochemistry of Amazonian freshwater along the Transamazônica in Brazil. Zentralblatt für Geologie und Paläontologie 1(9/10):1485–1493

    Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon Floodplain: Ecology of a Pulsing System. Ecological Studies, vol 126. Springer Verlag, Berlin, pp 47–68

    Google Scholar 

  • Furch K (2000) Chemistry and bioelement inventory of contrasting Amazonian forest soils. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazon floodplain: actual use and options for a sustainable management. Backhuys, Leiden, pp 109–128

    Google Scholar 

  • Furch K, Junk WJ (1980) Water chemistry and macrophytes of creeks and rivers in Southern Amazonia and the Central Brazilian shield. In: Furtado JI (ed) Tropical ecology and development part 2. The International Society of Tropical Ecology, Kuala Lumpur, pp 771–796

    Google Scholar 

  • Furch K, Junk WJ (1997) Physicochemical conditions in floodplains. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. ecological studies, vol 126. Springer Verlag, Berlin, pp 69–108

    Google Scholar 

  • Furch B, Otto K (1987) Characterization of light regime changes (PAR) by irradiance reflectance in two Amazonian water bodies with different Physico-chemical properties. Archiv für Hydrobiologie 110(4):579–587

    Google Scholar 

  • Gessner F (1968) Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Internationale Revue der gesamten Hydrobiologie 53:525–547

    Google Scholar 

  • Gopal B, Kvet J, Löffler H, Masing V, Patten BC (1990) Definition and classification. In: Patten BC (ed) Wetlands and shallow continental water bodies. SPB Academic Publishing BV, The Hague, pp 9–15

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research 107(D20):1–14

    Google Scholar 

  • Hess LL, Melack JM, Novo E, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87:404–428

    Google Scholar 

  • Heyligers PC (1963) Vegetation and soil of a White Sand Savanna in Surinam. N.V. Noord-Hollandsche Uitgevers Maatschappu, Amsterdam

    Google Scholar 

  • Horbe AMC, Horbe MA, Suguio K (2004) Tropical spodosols in northeastern Amazonas State, Brazil. Geoderma 119:55–68

    CAS  Google Scholar 

  • Huber O, Gharbarran G, Funk V (1995) Vegetation map of Guyana. Centre for the Study of Diversity, University of Guyana, Georgetown

    Google Scholar 

  • IBGE - Instituto Brasileiro de Geografia e Estatística (1992) Manual técnico da vegetação Brasileira. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, 44 pp

    Google Scholar 

  • Irion G (1978) Soil infertility in the Amazon rain forest. Naturwissenschaften 65:515–519

    CAS  Google Scholar 

  • Irion G, de Mello JASN, Morais J, Piedade MTF, Junk WJ, Garming L (2010) Development of the Amazon valley during the Middle to Late Quaternary: sedimentological and climatological observations. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer Verlag, Berlin, pp 27–42

    Google Scholar 

  • Irion G, Morais JO (2011) Sócio-economia da Amazônia. In: Morais JO, Pinheiro IS (eds) Gestão integrada das zonas costeiras: Desafios e perspectivas. Ed. Universidade Estadual do Ceará, Fortaleza

  • Irmler U (1977) Inundation─forest types in the vicinity of Manaus. Biogeographica 8:17–29

    Google Scholar 

  • IUCN (1971) The Ramsar Conference: Final act of the international conference on the conservation of wetlands and waterfowl, Annex 1.Special Supplement to IUCN, Bulletin 2, 4 pp

  • Jirka S, McDonald AJ, Johnson MS, Feldpausch TR, Couto EG, Riha SJ (2007) Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon. Journal Of Vegetation Science 18:183–194

    Google Scholar 

  • Josse C, Navarro G, Encarnación F, Tovar A, Comer P, Ferreira W, Rodríguez F, Saito J, Sanjurjo J, Dyson J, Rubin de Celis E, Zárate R, Chang J, Ahuite M, Vargas C, Paredes F, Castro W, Maco J, Arreátegui F (2007). Digital Ecological Systems Map of the Amazon Basin of Peru and Bolivia. Arlington, Virginia, USA., NatureServe, Arlington, Virginia, USA

  • Junk WJ (1989) Flood tolerance and tree distribution in central Amazonian floodplains. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic, London, pp 47–64

    Google Scholar 

  • Junk WJ (1993) Wetlands of Tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Dr. W. Junk Publ, Dordrecht, pp 679–739

    Google Scholar 

  • Junk WJ (2000) Mechanisms for development and maintenance of biodiversity in neotropical floodplains. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation, vol 1. Backhuys, Leiden, pp 119–139

    Google Scholar 

  • Junk WJ (2005) Flood Pulsing and the linkages between terrestrial, aquatic, and wetland systems. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 29:11–38

    Google Scholar 

  • Junk WJ, Piedade MTF (1997) Plant life in the floodplain with special reference to herbaceous plants. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 147–186

    Google Scholar 

  • Junk WJ, Piedade MTF (2005) Amazonian wetlands. In: Fraser LH, Keddy PA (eds) Large wetlands: their ecology and conservation. Cambridge University Press, Cambridge, pp 63–117

    Google Scholar 

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: New Aspects, approaches, and applications - an update. In: Welcome RL, Petr T (eds) Proceedings of the 2nd international symposium on the management of large rivers for fisheries, vol 2, Food and Agriculture Organization and Mekong River Commission. FAO Regional Office for Asia and the Pacific, Bangkok, pp 117–149

    Google Scholar 

  • Junk WJ, Weber GE (1996) Amazonian floodplains: a limnological perspective. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 26:149–157

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain-systems. Canadian Special Publications for Fisheries and Aquatic Sciences 106:110–127

    Google Scholar 

  • Junk WJ, Soares MGM, Saint-Paul U (1997) The fish. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 385–408

    Google Scholar 

  • Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (2010) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer Verlag, Berlin, 615 pp

    Google Scholar 

  • Kern J, Darwich A (1997) Nitrogen turnover in the várzea. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 147–186

    Google Scholar 

  • Kern J, Kreibich H, Koschorreck M, Darwich A (2010) Nitrogen balance of a floodplain forest of the Amazon River: the role of Nitrogen fixation. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer Verlag, Berlin, pp 281–299

    Google Scholar 

  • Kjerfve B, Perillo GME, Gardner LR, Rine JM, Dias GTM, Mochel FR (2001) Morphodynamics of muddy environments along the Atlantic coast of North and South America. In: Wang Y, Healy T (eds) Muddy coasts and relative sea level change. CRC, Boca Raton

    Google Scholar 

  • Klinge H (1967) Podzol soils: a source of blackwater rivers in Amazonia. Atas Simpósio Biota Amazonica, Belém 3:117–125

    Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution 162:285–304

    Google Scholar 

  • Lacerda LD, Conde JE, Kjerfve B, Alvarez-León R, Alarcón C, Polanía J (2002) American mangroves. In: Lacerda LD (ed) Mangrove ecosystems: function and management. Springer, Berlin, pp 1–62

    Google Scholar 

  • Latrubesse EM (2008) Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101:130–145

    Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296(1–4):1–22

    Google Scholar 

  • Luizão FJ, Luizão RCC, Proctor J (2007) Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecology 192:209–224

    Google Scholar 

  • Melack JM, Hess LL (2010) Remote sensing of the distribution and extent of wetlands in the Amazon basin. In Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds.) Amazon floodplain forests: Ecophysiology, biodiversity and sustainable management. Springer, Ecological Studies, pp 43–59

  • Morison JIL, Piedade MTF, Mueller E, Long SP, Junk WJ, Jones MB (2000) Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 125:400–411

    Google Scholar 

  • Navarro G, Maldonado M (2002) Geografía ecológica de Bolivia: Vegetación y ambientes acuáticos. Centro de Ecología Simón I. Patino- Departamento de Difusión, Cotchabamba, 719 pp

    Google Scholar 

  • Neiff JJ (2001) Humedales de la Argentina: sinopsis, problemas y perspectivas futuras. In: Cirelli AF (ed.) El agua en Iberoamérica. Funciones de los humedales, calidad de vida y agua segura. Publ. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, pp 83–112

  • Nunes da Cunha C, Junk WJ (2011) A preliminary classification of habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international classification systems. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft, Sofia-Moscow, 127–142

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51:933–938

    Google Scholar 

  • Peixoto JMA, Nelson BW, Wittmann F (2009) Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sensing of Environment 113:2258–2266

    Google Scholar 

  • Petermann P (1997) The birds. In: Junk WJ (ed) The Central Amazon floodplain. Ecology of a pulsing system. Springer Verlag, Berlin, pp 419–452

    Google Scholar 

  • Piedade MTF, Junk WJ, Long P (1991) The productivity of the C4 grass Echinochloa polystachya on the Amazon floodplain. Ecology 72:1456–1463

    Google Scholar 

  • Pouilly M, Beck SG, Moraes RM, Ibenes C (2004) Diversidad biológica en la llanura de inundación del Rio Mamoré. Importância ecológica de la dinámica fluvial. Centro de Ecología Simón I, Patino, 383 pp

    Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia. 3. The terminology of Amazonian forest types subject to inundation. Brittonia 31:26–38

    Google Scholar 

  • Rodrigues RR, Leitão Filho H de F (2004) Matas ciliares: Conservação, e recuperação. Editora da Universidade de São Paulo, Fundação de Amparo à Pesquisa do Estado de São Paulo, Vol. 2, São Paulo, Brazil, 320 pp

  • Schöngart J, Junk WJ (2007) Forecasting the flood pulse in central Amazonia by ENSO-indices. Journal of Hydrology 335:124–132

    Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern oscillation effect. Global Change Biology 10:683–692

    Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461

    PubMed  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M (2010) Biomass and net primary production of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer Verlag, Berlin, pp 347–388

    Google Scholar 

  • Semeniuk CA, Semeniuk V (1995) A geomorphic approach to global classification for inland wetlands. Vegetatio 118:103–124

    Google Scholar 

  • Sioli H (1956) Über Natur und Mensch im brasilianischen Amazonasgebiet. Erdkunde 10(2):89–109

    Google Scholar 

  • Sombroek W (2001) Spatial and temporal patterns of Amazon rainfall - Consequences for the planning of agricultural occupation and the protection of primary forests. Ambio 30:388–396

    PubMed  CAS  Google Scholar 

  • Veloso HG, Rangel Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, 123 pp

    Google Scholar 

  • Vicentini A (2004) A vegetação ao longo de um gradiente edáfico no Parque Nacional do Jaú. In: Borges SH, Iwanaga S, Durigan CC, Pinheiro MR (eds) Janelas para a biodiversidade no Parque Nacional do Jaú: uma estratégia para o estudo da biodiversidade na Amazônia. Fundação Vitória Amazônica (FVA), World Wildlife Fund (WWF), Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Manaus, pp 117–143

  • Wantzen KM (1998) Effects of siltation on benthic communities in clear water streams in Mato Grosso, Brasil. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 26:1155–1159

    Google Scholar 

  • Wantzen KM (2003) Cerrado streams – characteristics of a threatened freshwater ecosystem type on the Tertiary Shields of Central South America. Amazoniana XVII(3/4):481–502

    Google Scholar 

  • Weber GE, Furch K, Junk WJ (1996) A simple modeling approach towards hydrochemical seasonality of major cations in a Central Amazonian floodplain lake. Ecological Modelling 91:39–56

    CAS  Google Scholar 

  • Welcomme RL (1979) Fisheries ecology of floodplain rivers. Longmann, London

    Google Scholar 

  • Westlake DF, Kvet J, Szczepanski A (1988) Ecology of wetlands. IBP-Wetlands synthesis. Cambridge University Press, London, 568 pp

    Google Scholar 

  • Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. Forest Ecology and Management 196:199–212

    Google Scholar 

  • Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon basin. Journal of Biogeography 33:1334–1347

    Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010) Phytogeography, species diversity, community structure and dynamics of Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer Verlag, Berlin, pp 61–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang J. Junk.

Appendix

Appendix

A glossary of indigenous, Portuguese and Spanish terms

Buritizal :

Palm swamp dominated by buriti (Mauritia flexuosa)

Campina (Caatinga baixa, Bana, Chamizal, Muri scrub) :

Low shrub and tree savanna areas on podzols in the Amazon rainforest. Some areas are periodically waterlogged or shallowly flooded (edaphic hydromorphic savannas)

Campinarana (Caatinga alta, Varillal, Wallaba) :

Low stature, thin-trunked forest areas on podzols in the Amazon rainforest, sometimes periodically waterlogged or shallowly flooded (edaphic hydromorphic savannas covered by stunted forest)

Campo úmido :

Wetland in the cerrado covered by grasses, sedges, and herbs

Cerrado :

Brazilian savanna. This general term includes different physiognomies from open grasslands and shrub lands to low dry forests (cerradão)

Igapó :

Floodplain of blackwater rivers

Paleo-várzea :

Ancient whitewater river sediments that were deposited during former interglacial periods and are impoverished in nutrients

Tepui :

Table mountain on the Guiana shield

Terra firme :

Upland, covered by never-flooded Amazonian rainforest

Várzea :

Floodplain of recent whitewater rivers

Vereda :

Wetland adjacent to streams in the cerrado and covered by shrubs, buriti palms, grasses, sedges, and herbs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junk, W.J., Piedade, M.T.F., Schöngart, J. et al. A Classification of Major Naturally-Occurring Amazonian Lowland Wetlands. Wetlands 31, 623–640 (2011). https://doi.org/10.1007/s13157-011-0190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-011-0190-7

Keywords

Navigation