Efficacité de trois larvicides d’origine biologique et d’un régulateur de croissance contre Anopheles arabiensis au Sénégal

  • S. M. Diédhiou
  • L. Konaté
  • S. Doucouré
  • B. Samb
  • E. A. Niang
  • O. Sy
  • O. Thiaw
  • A. Konaté
  • A. N. Wotodjo
  • M. Diallo
  • L. Gadiaga
  • C. Sokhna
  • O. Faye
Entomologie Médicale / Medical Entomology
  • 50 Downloads

Résumé

Le paludisme urbain est considéré comme un problème majeur en Afrique. Au Sénégal, les modifications environnementales semblent favoriser la persistance de la transmission du paludisme dans la banlieue de Dakar par la création, tout au long de l’année, de potentiels gîtes larvaires de moustiques vecteurs de Plasmodium. Face à cette situation et dans un contexte de généralisation de la résistance des vecteurs aux insecticides, la lutte antilarvaire (LAL) usant notamment des produits d’origine biologique ou des régulateurs de croissance pourrait constituer une mesure complémentaire aux stratégies actuelles de lutte contre les anophèles vecteurs. Cette étude réalisée en 2012 vise à mesurer l’efficacité et l’effet résiduel de trois larvicides d’origine biologique (VectoBac® WG, VectoBac® GR et VectoMax® CG) et d’un régulateur de croissance (MetaLarv™) sur les larves d’Anopheles gambiae s.l. en conditions semi-naturelles (station expérimentale) et naturelles, dans des gîtes larvaires de la banlieue de Dakar. Les formulations ont été testées selon les doses recommandées par le fabricant (0,03 g/m2 pour VectoBac® WG, 0,5 g/m2 pour VectoBac® GR, 0,75 g/m2 pour VectoMax® CG et 0,5 g/m2 pour MetaLarv™). En station expérimentale, le traitement par larvicides a été efficace sur une période de 14 jours avec une mortalité variant entre 92 et 100 %. Malgré une seule émergence notée au 27e jour après traitement, le régulateur de croissance est resté efficace jusqu’à 55 jours. En conditions naturelles, l’efficacité des larvicides a été totale à 48 heures après le traitement. Audelà, une recolonisation progressive des gîtes a été notée. Par contre, le régulateur de croissance a réduit l’émergence des adultes de plus de 80 % jusqu’à la fin du suivi (j28). Cette étude a montré une bonne efficacité des larvicides et du régulateur de croissance. Ces travaux fournissent des données à jour sur de potentiels candidats pour la mise en oeuvre d’interventions de LAL en complément de celle imagocide chimique pour un contrôle du paludisme urbain.

Mots clés

Efficacité Larvicides Bacillus thuringiensis israelensis Bacillus sphaericus Serotype H5a5b Régulateur de croissance Méthoprène Anopheles arabiensis An. gambiae s.l. Station expérimentale Conditions naturelles Mbao Thiaroyesur-mer Djiddah Thiaroye Kao Dalifort Pikine Dakar Sénégal Afrique intertropicale 

Effectiveness of three biological larvicides and of an insect growth regulator against Anopheles arabiensis in Senegal

Abstract

Urban malaria is a major public health problem in Africa. In Senegal, the environmental changes seem to favor the persistence of malaria transmission in Dakar suburbs by creating, throughout the year, potential breeding sites of malaria vectors. In such a situation and in a context of a growing threat of insecticide resistance in anopheline vectors, the larval control making use of products from biological origin or growth regulators could represent an additional tool to the current strategies developed against anophelines. In this study conducted in 2012, the efficiency and residual effect of three biological larvicides (VectoBac® WG, Vecto-Max® CG, and VectoBac® GR) and an insect growth regulator (MetaLarv™) were evaluated on Anopheles gambiae s.l. larvae in seminatural conditions (experimental station) and natural breeding sites in the suburbs of Dakar. The formulations were tested according to the manufacturer recommendations, namely 0.03 g/m2 for VectoBac® WG, 0.5 g/m2 for VectoBac® GR, 0.75 g/m2 for VectoMax® CG, and 0.5 g/m2 for MetaLarv™. In experimental station, the treatment with larvicides was effective over a period of 14 days with a mortality ranging between 92% and 100%. The insect growth regulator remained effective up to 55 days with a single emergence recorded in the 27th day after treatment. In natural conditions, a total effectiveness (100% mortality) of larvicides was obtained 48 hours after treatment, then a gradual recolonization of breeding sites was noted. However, the insect growth regulator has reduced adult emergence higher than 80% until the end of follow-up (J28). This study showed a good efficiency of the larvicides and of the growth regulator tested. These works provide current data on potential candidates for the implementation of larval control interventions in addition to that of chemical adulticide for control of urban malaria.

Keywords

Efficiency Larvicides Bacillus thuringiensis israelensis Bacillus sphaericus serotype H5a5b Insect growth regulators Methoprene Anopheles arabiensis An gambiae s.l Experimental station Natural conditions Mbao Thiaroye-sur-mer Djiddah Thiaroye Kao Dalifort Pikine Dakar Senegal Sub-Saharan Africa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Adak T, Mittal PK, Raghavendra K, et al (1995) Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823. Curr Sci 69:695–8Google Scholar
  2. 2.
    ANAMS (2013) Agence nationale de la météorologie, ANAMS, SénégalGoogle Scholar
  3. 3.
    Anderson JF, Ferrandino FJ, Dingman DW, et al (2011) Control of mosquitoes in catch basins in Connecticut with Bacillus thuringiensis israelensis, Bacillus sphaericus, [corrected] and spinosad. J Am Mosq Control Assoc 27:45–55CrossRefPubMedGoogle Scholar
  4. 4.
    ANSD (2013) Rapport définitif — Recensement général de la population et de l’habitat, de l’agriculture et de l’élevage — Agence nationale de la statistique et de la démographie, 417 pGoogle Scholar
  5. 5.
    Baruah I, Das SC (1996) Evaluation of methoprene (Altosid) and diflubenzuron (Dimilin) for control of mosquito breeding in Tezpur (Assam). Indian J Malariol 33:61–6PubMedGoogle Scholar
  6. 6.
    Becker N (2010) The Rhine Larviciding Program and its application to vector control Springer. Vector Biology, Ecology and Control, pp 209–19Google Scholar
  7. 7.
    Becker N, Ludwig M, Beck M, Zgomba M (1993) The impact of environmental factors on the efficacy of Bacillus sphaericus against Culex pipiens. Bull Soc Vector Ecol 18:61–6Google Scholar
  8. 8.
    Bhatt S, Weiss DJ, Cameron E, et al (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207–11CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carlson DB (2006) Source reduction in Florida’s salt marshes: management to reduce pesticide use and enhance the resource. J Am Mosq Control Assoc 22:534–7CrossRefPubMedGoogle Scholar
  10. 10.
    Cetin H, Oz E, Yanikoglu A, Cilek JE (2015) Operational evaluation of VectoMax® WSP (Bacillus thuringiensis Subsp. Israelensis+ Bacillus sphaericus) Against Larval Culex pipiens in Septic Tanks (1). J Am Mosq Control Assoc 31:193–5CrossRefPubMedGoogle Scholar
  11. 11.
    Christiansen JA, McAbee RD, Stanich MA, et al (2004) Influence of temperature and concentration of VectoBac® on control of the salt-marsh mosquito, Ochlerotatus squamiger, inMonterey County, California. J Am Mosq Control Assoc 20:165–70PubMedGoogle Scholar
  12. 12.
    Dambach P, Louis VR, Kaiser A, et al (2014) Efficacy of Bacillus thuringiensis var. israelensis against malaria mosquitoes in northwestern Burkina Faso. Parasit Vectors 7:371CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Darabi H, Vatandoost H, Abaei MR, et al (2011) Effectiveness of methoprene, an insect growth regulator, against malaria vectors in fars, Iran: a field study. Pak J Biol Sci 14: 69–73CrossRefPubMedGoogle Scholar
  14. 14.
    Diagne N, Fontenille D, Konate L, et al (1994) Les anophèles du Sénégal. Liste commentée et illustrée. Bull Soc Pathol Exot 87:267–77 [http://www.pathexo.fr/documents/articles-bull/Bull- SocPatholExot-1994-87-4-267-277.pdf]Google Scholar
  15. 15.
    Diallo A, Ndam NT, Moussiliou A, et al (2012) Asymptomatic carriage of plasmodium in urban Dakar: the risk of malaria should not be underestimated. PloS one 7:e31100CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Djenontin A, Pennetier C, Zogo B, et al (2014) Field efficacy of VectoBac® GR as a mosquito larvicide for the control of anopheline and culicine mosquitoes in natural habitats in Benin, West Africa. PloS one 9:e87934CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Donnelly MJ, McCall PJ, Lengeler C, et al (2005) Malaria and urbanization in sub-Saharan Africa. Malaria J 4:12CrossRefGoogle Scholar
  18. 18.
    Dritz DA, Lawler SP, Evkhanian C, et al (2011) Control of mosquito larvae in seasonal wetlands on a wildlife refuge using VectoMax ® CG. J Am Mosq Control Assoc 27:398–403CrossRefPubMedGoogle Scholar
  19. 19.
    Fillinger U, Knols BG, Becker N (2003) Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Trop Med Int Health 8:37–47CrossRefPubMedGoogle Scholar
  20. 20.
    Fillinger U, Lindsay SW (2011) Larval source management for malaria control in Africa: myths and reality. Malaria J 10:353CrossRefGoogle Scholar
  21. 21.
    Gadawski R (1989) Annual report on mosquito surveillance and control in Winnipeg. Insect Control Branch, Parks & Recreation Department, WinnipegGoogle Scholar
  22. 22.
    Haq S, Bhatt RM, Vaishnav KG, Yadav RS (2004) Field evaluation of biolarvicides in Surat city, India. J Vector Borne Dis 41:61–6PubMedGoogle Scholar
  23. 23.
    Karch S, Manzambi ZA, Salaun JJ (1991) Field trials with Vectolex (Bacillus sphaericus) and Vectobac (Bacillus thuringiensis (H-14)) against Anopheles gambiae and Culex quinquefasciatus breeding in Zaire. J Am Mosq Control Assoc 7:176–9PubMedGoogle Scholar
  24. 24.
    Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–63CrossRefPubMedGoogle Scholar
  25. 25.
    Lacoursière JO, Boisvert J (2004) Le Bacillus thuringiensis et le contrôle des insectes piqueurs au Québec. Ministère de l’Environnement, Québec, 101 pGoogle Scholar
  26. 26.
    Lindsay SW (2011) Larval source management work streamupdate and plans, report of the 6th annual meeting of The Roll Back Malaria Partnership Vector Control Working Group, Geneva, 43 pGoogle Scholar
  27. 27.
    Majambere S, Lindsay SW, Green C, et al (2007) Microbial larvicides for malaria control in The Gambia. Malaria J 6:76CrossRefGoogle Scholar
  28. 28.
    Mittal PK (2003) Biolarvicides in vector control: challenges and prospects. J Vector Borne Dis 40:20–32PubMedGoogle Scholar
  29. 29.
    Mittal PK, Adak T, Sharma VP (1998) Variations in the response to Bacillus sphaericus toxins in different strains of Anopheles stephensi Liston. Indian J Malariol 35:178–84PubMedGoogle Scholar
  30. 30.
    Mulla MS, Federici BA, Darwazeh HA, Ede L (1982) Field evaluation of the microbial insecticide Bacillus thuringiensis serotype H-14 against floodwater mosquitoes. Appl Environ Microbiol 43:1288–93PubMedPubMedCentralGoogle Scholar
  31. 31.
    Nartey R, Owusu-Dabo E, Kruppa T, et al (2013) Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana. Parasit Vectors 6:116CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    OMS (1983) Lutte antivectorielle intégrée. Organisation mondiale de la santé (OMS), Genève, 84 pGoogle Scholar
  33. 33.
    OMS (1982) Lutte biologique contre les vecteurs de maladies. Organisation mondiale de la santé (OMS), Genève, 48 pGoogle Scholar
  34. 34.
    PNLP (2013) Rapport statistique (2010–2013). Programme national de lutte contre le paludisme, PNLP, Sénégal, 33 pGoogle Scholar
  35. 35.
    Porter AG, Davidson EW, Liu JW (1993) Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiol Rev 57:838–61PubMedPubMedCentralGoogle Scholar
  36. 36.
    Romi R, Ravoniharimelina B, Ramiakajato M, Majori G (1993) Field trials of Bacillus thuringiensis H-14 and Bacillus sphaericus (strain 2362) formulations against Anopheles arabiensis in the central highlands of Madagascar. J Am Mosq Control Assoc 9:325–9PubMedGoogle Scholar
  37. 37.
    Seyoum A, Abate D (1997) Larvicidal efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on Anopheles arabiensis in Ethiopia. World J Microbiol Biotechnol 13:21–4CrossRefGoogle Scholar
  38. 38.
    Shililu JI, Tewolde GM, Brantly E, et al (2003) Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus and temephos for managing Anopheles larvae in Eritrea. J Am Mosq Control Assoc 19:251–8PubMedGoogle Scholar
  39. 39.
    Skovmand O, Sanogo E (1999) Experimental formulations of Bacillus sphaericus and Bacillus thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. J Med Entomol 36:62–7CrossRefPubMedGoogle Scholar
  40. 40.
    Su T, Mulla MS (1999) Field evaluation of new water-dispersible granular formulations of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. J Am Mosq Control Assoc 15:356–65PubMedGoogle Scholar
  41. 41.
    Trape JF (1986) L’impact de l’urbanisation sur le paludisme en Afrique centrale. Thèse d’État (Sciences), université de Pans-Sud, Centre d’OrsayGoogle Scholar
  42. 42.
    WHO (2014) Global Malaria Program, World malaria report. World Health Organization, Geneva, 242 pGoogle Scholar
  43. 43.
    WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, Geneva, 39 pGoogle Scholar
  44. 44.
    WHO (2013) Larval source management, a supplementary measure for malaria vector control, an operational manual. World Health Organization, Geneva, 128 pGoogle Scholar
  45. 45.
    WHO (2015) World malaria report. World Health Organization, Switzerland, Geneva, 280 pGoogle Scholar
  46. 46.
    Wilkins EE, Howell PI, Benedict MQ (2006) IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malaria J 5:125CrossRefGoogle Scholar

Copyright information

© Lavoisier 2016

Authors and Affiliations

  • S. M. Diédhiou
    • 1
    • 2
  • L. Konaté
    • 1
  • S. Doucouré
    • 2
  • B. Samb
    • 1
  • E. A. Niang
    • 1
  • O. Sy
    • 1
  • O. Thiaw
    • 1
    • 2
  • A. Konaté
    • 1
  • A. N. Wotodjo
    • 2
  • M. Diallo
    • 1
  • L. Gadiaga
    • 3
  • C. Sokhna
    • 2
  • O. Faye
    • 1
  1. 1.Laboratoire d’écologie vectorielle et parasitaire, faculté des sciences et techniquesuniversité Cheikh-Anta-Diop de DakarDakarSénégal
  2. 2.Unité de recherche sur les maladies infectieuses et tropicales émergentes (Urmite), IRD, UMR 198CNRS 6236, Inserm 1095, Aix-Marseille-Université Campus UCAD-IRDDakarSénégal
  3. 3.Programme national de lutte contre le paludismeDakarSénégal

Personalised recommendations