Skip to main content

Advertisement

Log in

Co-infections HTLV-1-Strongyloides stercoralis

Combined infection with HTLV-1 and Strongyloides stercoralis

  • Parasitologie / Parasitology
  • Published:
Bulletin de la Société de pathologie exotique

Résumé

L’infection des porteurs d’anguillules par le rétrovirus humain oncogène HTLV-1 accroît significativement le nombre des larves du parasite présentes dans les selles et interfère avec les anthelminthiques en multipliant le nombre des échecs thérapeutiques immédiats ou à terme. La prolifération des lymphocytes secrétant des cytokines de type 1, cibles préférentielles de l’infection virale, entraîne une bascule de la balance Th1/Th2 en faveur d’une réponse Th1, et donc une production accrue d’interféron gamma (INF-γ). Celle-ci se traduit, entre autres, par le biais de la diminution de la sécrétion des cytokines IL-4, IL-5, IL-13 qu’elle entraîne par une baisse importante des IgE totales et spécifiques, une non-activation, une baisse ou une stagnation du nombre des éosinophiles et un risque accru de voir apparaître une forme grave d’anguillulose. Le taux des anticorps anti-HTLV-1 et l’importance de la charge provirale des lymphocytes périphériques sont apparemment corrélés à ce risque. L’expansion polyclonale des CD4 infectés pourrait être due en partie à l’activation du système IL-2/IL-2R par les antigènes parasitaires, en complément de l’action de la protéine virale Tax. Le fait que la survenue des ATL soit significativement plus précoce et plus fréquente chez les co-infectés est un argument en faveur du rôle joué par le parasite comme cofacteur leucémogène. Il convient donc, en pratique, de tout mettre en oeuvre pour déparasiter les co-infectés, malgré les difficultés que cela représente, et de ne pas refuser l’éventualité diagnostique d’une anguillulose en l’absence d’hyperéosinophilie. Dans tous les cas d’anguillulose chronique sans hyperéosinophilie, la recherche d’une co-infection avec le HTLV-1 devra être systématique, ainsi que chez les porteurs d’anguillules en échec répété de traitement. Les corticoïdes et les immunosuppresseurs, enfin, ne devront être utilisés qu’avec prudence chez les HTLV-1 positifs apparemment non co-infectés, même après traitement de sécurité.

Abstract

Infection of carriers of strongyloides by the human oncogenic retrovirus HTLV-1 significantly augments the number of larval parasites in the stools and impairs the action of anti-helminthic agents, resulting in an increase in immediate and longer term failure of therapy. The proliferation of cytokine type 1 secreting lymphocytes, the preferred target for viral infection, shifts the Th1/Th2 balance in favour of a Th1 response with a consequent increase in the production of gamma interferon (INF-γ). In addition to other effects, this causes a decrease in the secretion of cytokines IL-4, IL-5 and IL-13, which results in substantial reduction in total and specific IgE; failure of activation of eosinophils or stagnation in or reduction of their numbers; and an increased risk of development of a severe form of strongyloidiasis. This risk is clearly correlated with the level of anti-HTLV-1 antibodies and the amplitude of the proviral load of peripheral lymphocytes. The polyclonal expansion of infected CD4 cells might be partly due to the activation of the IL-2/IL-2R system by parasite antigens together with the action of the virus type 1 Tax protein. The fact that adult T cell leukaemia arises significantly earlier and more often in individuals with combined infection is an argument in favour of the parasite’s role as a leukaemogenic co-factor. In practice it is, therefore, appropriate to initiate all available measures to eliminate parasites from co-infected hosts although this does present difficulties, and one should not reject the possibility of a diagnosis of strongyloidiasis in the absence of hypereosinophilia. In all cases of chronic strongyloidiasis without hypereosinophilia, co-infection with HTLV-1 should be looked for routinely. The same applies to carriers of strongyloides with repeated treatment failures. Finally, corticosteroids and immunosuppressants should be used only with care in HTLV-1-positive patients who seem not to be co-infected, even if they have received precautionary therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Arakaki T, Hasegawa H, Asato R, et al (1988) A new method to detect Strongyloides stercoralis from human stool. Jap J Trop Med Hyg 16:11–17

    Google Scholar 

  2. Arakaki T, Asato R, Ikeshiro T, et al (1992) Is the prevalence of HTLV-1 infection higher in Strongyloides carriers than in noncarriers? Trop Med Parasitol 43(3):199–200

    PubMed  CAS  Google Scholar 

  3. Araujo AQ, Silva MT (2006) The HTLV-1 neurological complex. Lancet Neurol 5(12):1068–1076

    Article  PubMed  CAS  Google Scholar 

  4. Ariumi Y, Kaida A, Lin JY, et al (2000) HTLV-1 Tax oncoprotein represses the p53-mediated trans-activation function through coactivator CBP sequestration. Oncogene 19(12):1491–1499

    Article  PubMed  CAS  Google Scholar 

  5. Bleay C, Wilkes CP, Paterson S, Viney ME (2007) Density-dependent immune responses against the gastrointestinal nematode Strongyloides ratti. Int J Parasitol 37(13):1501–1509. Epub 2007 May 18

    Article  PubMed  CAS  Google Scholar 

  6. Brigandi RA, Rotman HL, Nolan TJ, et al (1997) Chronicity in Strongyloides stercoralis infections: dichotomy of the protective immune response to infective and autoinfective larvae in a mouse model. Am J Trop Med Hyg 56(6):640–646

    PubMed  CAS  Google Scholar 

  7. Boxus M, Twizere JC, Legros S, et al (2008) The HTLV-1 Tax interactome. Retrovirology 5:76

    Article  PubMed  CAS  Google Scholar 

  8. Buggage RR (2003) Ocular manifestations of human T-cell lymphotropic virus type 1 infection. Current Opin Ophtalmol 14(6): 420–425

    Article  Google Scholar 

  9. Carvalho EM, Da Fonseca Porto A (2004) Epidemiological and clinical interaction between HTLV-1 and Strongyloides stercoralis. Parasite Immunol 26(11-12):487–497

    Article  PubMed  CAS  Google Scholar 

  10. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104(6):777–785

    Article  PubMed  CAS  Google Scholar 

  11. Chieffi PP, Chiattone CS, Feltrim EN, et al (2000) Co-infection by Strongyloides stercoralis in blood donors infected with human T-cell leukemia/lymphoma virus type 1 in São Paulo City, Brazil. Mem Inst Oswaldo Cruz 95(5):711–712

    Article  PubMed  CAS  Google Scholar 

  12. Chiu HH, Lai SL (2005) Fatal meningoencephalitis caused by disseminated strongyloidiasis. Acta Neurol Taïwan 14(1):24–27

    PubMed  Google Scholar 

  13. Clerici M, Shearer GM (1994) The Th1/Th2 hypothesis of HIV infection: new insights. Immunol Today 15(12):575–581

    Article  PubMed  CAS  Google Scholar 

  14. Clerici M, Shearer GM (1993) A Th1/Th2 switch is a critical step in the etiology of HIV infection. Immunol Today 14(3):107–111

    Article  PubMed  CAS  Google Scholar 

  15. Concha R, Harrington W Jr, Rogers AI (2005) Intestinal strongyloidiasis: recognition, management and determinants of outcome. J Clin Gastroenterol 39(3):203–211

    Article  PubMed  Google Scholar 

  16. Courouble G, Rouet F, Herrmann-Storck C, et al (2004) Epidemiologic study of the association between human T-cell lymphotropic virus type 1 and Strongyloides stercoralis infection in female blood donors (Guadeloupe, French West Indies). West Indian Med J 53(1):3–6

    PubMed  CAS  Google Scholar 

  17. Dreyer G, Fernandes-Silva E, Alves S, et al (1996) Patterns of detection of Strongyloides stercoralis in stool specimens: implications for diagnosis and clinical trials. J Clin Microbiol 34(10): 2569–2571

    PubMed  CAS  Google Scholar 

  18. Eguchi K, Origuchi T, Takashima H, et al (1996) High seropre-valence of anti-HTLV-1 antibody in rheumatoid arthritis. Arthritis Rheum 39(3):463–466

    Article  PubMed  CAS  Google Scholar 

  19. Faust EC (1933) Experimental studies on human and primate species of Strongyloides. II. The development of Strongyloides in the experimental host. Am J Hyg 18:114–132

    Google Scholar 

  20. Fallon PG, Cooper RO, Probert AJ, Doenhoff MJ (1992) Immune-dependent chemotherapy of schistosomiasis. Parasitology 105:S41–S48

    Article  PubMed  Google Scholar 

  21. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170(6):2081–2095

    Article  PubMed  CAS  Google Scholar 

  22. Gabet AS, Mortreux F, Talarmin A, et al (2000) High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 19(43):4954–4960

    Article  PubMed  CAS  Google Scholar 

  23. Genta RM (1992) Dysregulation of strongyloidiasis: a new hypothesis. Clin Microbiol Rev 5(4):345–355

    PubMed  CAS  Google Scholar 

  24. Gemmill AW, Viney ME, Read AF (1997) Host immune status determines sexuality in a parasitic nematode. Evolution 51(2): 393–340

    Article  Google Scholar 

  25. Gessain A, Barin F, Vernant JC, et al (1985) Antibodies to human T-lymphotropic virus type 1 in patients with tropical spastic paraparesis. Lancet 2(8452):407–410

    Article  PubMed  CAS  Google Scholar 

  26. Gessain A, Saal F, Gout O, et al (1990) High human T-cell lymphotropic virus type 1 proviral DNA load with polyclonal integration in peripheral blood mononuclear cells of French West Indian, Guianese, and African patients with tropical spastic paraparesis. Blood 75(2):428–433

    PubMed  CAS  Google Scholar 

  27. Gessain A, de Thé G (1994) Épidémiologie clinique et moléculaire du virus HTLV-1 et des maladies associées. Med Mal Inf 24:543–547

    Article  Google Scholar 

  28. Goldhill J, Morris SC, Maliszewski C, et al (1997) Interleukin-4 modulates cholinergic neural control of mouse small intestinal longitudinal muscle. Am J Phys 272(5 Pt 1):G1135–G1140

    CAS  Google Scholar 

  29. Gotuzzo E, Terashima A, Alvarez H, et al (1999) Strongyloides stercoralis hyperinfection associated with human T cell lymphotropic virus type 1 infection in Peru. Amer J Trop Med Hyg 60(1):146–149

    CAS  Google Scholar 

  30. Grindstaff P, Gruener G (2005) The peripheral nervous system complications of HTLV-1 myelopathy (HAM/TSP) syndromes. Semin Neurol 25(3):315–327

    Article  PubMed  Google Scholar 

  31. Hasunuma T, Sumida T, Nishioka K (1996) Human T cell leukemia virus type 1 and rheumatoid arthritis. Int Rev Immunol 17(5-6):291–307

    Article  Google Scholar 

  32. Hayashi J, Kishihara Y, Yoshimura E, et al (1997) Correlation between human T cell lymphotropic virus type 1 and Strongyloides stercoralis infections and serum immunoglobulin E responses in residents of Okinawa, Japan. Am J Trop Med Hyg 56(1):71–75

    PubMed  CAS  Google Scholar 

  33. Harvey SC, Gemmill AW, Read AF, Viney ME (2000) The control of morph development in the parasitic nematode Strongyloides ratti. Proc Biol Sci 267(1457):2057–2063

    Article  PubMed  CAS  Google Scholar 

  34. Hirata T, Uchima N, Kishimoto K, et al (2006) Impairment of host immune response against Strongyloides stercoralis by human T cell lymphotropic virus type 1 infection. Am J Trop Med Hyg 74(2):246–249

    PubMed  Google Scholar 

  35. Jankovic D, Kullberg MC, Noben-Trauth N, et al (1999) Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J Immunol 163(1):337–342

    PubMed  CAS  Google Scholar 

  36. Jeang KT, Widen SG, Semmes OJ 4th, Wilson SH (1990) HTLV-1 trans-activator protein, Tax, is a trans-repressor of the human betapolymerase gene. Science 247(4946):1982–1984

    Article  Google Scholar 

  37. Jin DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93(1):81–91

    Article  PubMed  CAS  Google Scholar 

  38. Kaplan JE, Osame M, Kubota H, et al (1990) The risk of development of HTLV-1-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-1. J Acquir Immune Defic Syndr (11):1096–1101

    Google Scholar 

  39. Kaslow JE, Novey HS, Zuch RH, Spear GS (1990) Disseminated strongyloidiasis: an unheralded risk of corticosteroid therapy. J Allergy Clin Immunol 86(1):138

    Article  PubMed  CAS  Google Scholar 

  40. Keiser PB, Nutman TB (2004) Srongyloides stercoralis in the immunocompromised population. Cli Microbiol Rev 17(1):208–217

    Article  Google Scholar 

  41. Kerepesi LA, Nolan TJ, Schad GA, et al (2004) Human i mmunoglobulin G mediates protective immunity and identifies protective antigens against larval Strongyloides stercoralis in mice. J Infect Dis 189(7):1282–1290. Epub 2004 Mar 12

    Article  PubMed  CAS  Google Scholar 

  42. Kobayashi T, Tsuchiya K, Hara T, et al (1998) Intestinal mast cell response and mucosal defence against Strongyloides venezuelensis in interleukin-3-hyporesponsive mice. Parasite Immunol 20(6): 278–284

    Google Scholar 

  43. Kreis H (1932) Studies on the genus Strongyloides (Nematoda). Am J Hyg 16:450–491

    Google Scholar 

  44. Kubota R, Kawanishi T, Matsubara H, et al (1998) Demonstration of human T lymphotropic virus type 1 (HTLV-1) Tax-specific CD8 + lymphocytes directly in peripheral blood of HTLV-1-associated myelopathy/tropical spastic paraparesis patients by intracellular cytokine detection. J Immunol 161(1):482–488

    PubMed  CAS  Google Scholar 

  45. Lee R, Schwartz RA (2011) Cutaneous manifestations associated with HTLV-1 infections. J Am Acad Dermatol 54(1) 152–160

    Article  Google Scholar 

  46. Leelarasamee A, Nimmannit S, Na Nakorn S, et al (1978) Disseminated strongyloidiasis: report of seven cases. Southeast Asian J Trop Med Public Health 9(4):539–542

    PubMed  CAS  Google Scholar 

  47. Ligas JA, Kerepesi LA, Galioto AM, et al (2003) Specificity and mechanism of immunoglobulin M (IgM)- and IgG-dependent protective immunity to larval Strongyloides stercoralis in mice. Infect Immun 71(12):6935–6943

    Article  CAS  Google Scholar 

  48. Lim S, Hatz K, Krajden S, et al (2004) Complicated and fatal Strongyloides infection in Canadians: risk factors, diagnosis and management. CMAJ 171(5):479–484

    Article  PubMed  Google Scholar 

  49. Loutfy MR, Wilson M, Keystone JS, Kain KC (2002) Serology and eosinophil count in the diagnosis and management of strongyloidiasis in a non-endemic area. Am J Trop Med Hyg 66(6): 749–752

    PubMed  Google Scholar 

  50. Lucas SB (1990) Missing infections in AIDS. Trans R Soc Trop Med Hyg 84(Suppl 1):34–38

    Article  PubMed  Google Scholar 

  51. Mahé A, Meertens L, Ly F, et al (2004) Human T-cell leukaemia/lymphoma virus type 1-associated infective dermatitis in Africa: a report of five cases from Senegal. Br J Dermatol 150(5):958–965

    Article  PubMed  Google Scholar 

  52. Mahieux R, Gessain A (2007) Adult T-Cell Leukemia/Lymphoma and HTLV-1. Curr Hematol Malig Rep 2(4):257–264

    Article  PubMed  Google Scholar 

  53. Matsuoka M, Green PI (2009) The HBZ gene, a key player in HTLV-1 pathogenesis. Retrovirology 6:71

    Article  PubMed  CAS  Google Scholar 

  54. Mir A, Benahmed D, Igual R, et al (2006) Eosinophil-selective mediators in human strongyloidiasis. Parasite Immuol 28(8): 397–400

    Article  CAS  Google Scholar 

  55. Miyake H, Suzuki T, Hirai H, Yoshida M (1999) Trans-activator Tax of human T-cell leukemia virus type 1 enhances mutation frequency of the cellular genome. Virology 253(2):155–161

    Article  PubMed  CAS  Google Scholar 

  56. Mochizuki M, Watanabe T, Yamaguchi K, et al (1992) Uveitis associated with human T lymphotropic virus type 1: seroepidemiologic, clinical, and virologic studies. J Infect Dis 166(4):943–944

    Article  PubMed  CAS  Google Scholar 

  57. Montes M, Sanchez C, Verdonck K, et al (2009) Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen. PloS Negl Trop Dis 3(6):e456

    Article  PubMed  CAS  Google Scholar 

  58. Murphy EL, Hanchard B, Figueroa JP, et al (1989) Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type 1. Int J Cancer 43(2):250–253

    Article  PubMed  CAS  Google Scholar 

  59. Nagai M, Usuku K, Matsumoto W, et al (1998) Analysis of HTLV-1 proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-1 carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol 4(6):586–593

    Article  PubMed  CAS  Google Scholar 

  60. Nakada K, Kohakura M, Komoda H, Hinuma Y (1984) High incidence of HTLVantibody in carriers of Strongyloides stercoralis. Lancet 1(8377):633

    Article  PubMed  CAS  Google Scholar 

  61. Nakada K, Yamaguchi K, Furugen S (1987) Monoclonal integration of HTLV-1 proviral DNA in patients with strongyloidiasis. Int J Cancer 40(2):145–148

    Article  PubMed  CAS  Google Scholar 

  62. Negrão-Corrêa D (2001) Importance of immunoglobulin E (IgE) in the protective mechanism against gastrointestinal nematode infection: looking at the intestinal mucosae. Rev Inst Med Trop SÀo Paulo 43(5):291–299

    PubMed  Google Scholar 

  63. Nera FA, Murphy EL, Gam A, et al (1989) Antibodies to Strongyloides stercoralis in healthy Jamaican carriers of HTLV-1. N Engl J Med 320(4):252–253

    Article  PubMed  CAS  Google Scholar 

  64. Neva FA, Filho JO, Gam AA, et al (1998) Interferon-gamma and interleukin-4 responses in relation to serum IgE levels in persons infected with human T lymphotropic virus type 1 and Strongyloides stercoralis. J Infect Dis 178(6):1856–1859

    Article  PubMed  CAS  Google Scholar 

  65. Newton RC, Limpuangthip P, Greenberg S (1992) Strongyloides stercoralis hyperinfection in a carrier of HTLV-1 virus with evidence of selective immunosuppression. Amer J Med 92(2): 202–208

    Article  PubMed  CAS  Google Scholar 

  66. Nishioka K, Maruyama I, Sato K, et al (1989) Chronic inflammatory arthropathy associated with HTLV-1. Lancet 1(8635):441

    Article  PubMed  CAS  Google Scholar 

  67. Olindo S, Lézin A, Cabre P, et al (2005) HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression. J Neurol Sci 237(1–2): 53–59

    Article  PubMed  Google Scholar 

  68. Oliveira Mde F, Brites C, Ferraz N, et al (2005) Infective dermatitis associated with the human T cell lymphotropic virus type 1 in Salvador, Bahia, Brazil. Clin Infec Dis 40(11): e90–e96. Epub 2005 Apr 27

    Article  Google Scholar 

  69. Osame M, Usuku K, Izumo S, et al (1986) HTLV-1 associated myelopathy, a new clinical entity. Lancet 1(8488):1031–1032

    Article  PubMed  CAS  Google Scholar 

  70. Patey O, Gessain A, Breuil J, et al (1992) Seven years of recurrent severe strongyloidiasis in an HTLV-1-infected man who developed adult T-cell leukaemia. AIDS 6(6):575–579

    Article  PubMed  CAS  Google Scholar 

  71. Petithory JC, Derouin F (1987) AIDS and strongyloidiasis in Africa. Lancet 1(8538):921

    Article  PubMed  CAS  Google Scholar 

  72. Petithory JC (1998) Les éosinophilies familiales: apports de la parasitologie à leur diagnostic. Bull Acad Natl Med 182(9): 1823–1835

    PubMed  CAS  Google Scholar 

  73. Peters L, McCarthy AE, Faught C (2009) Secondary Strongyloides stercoralis prophylaxis in patients with human T-cell lymphotropic virus type 1 infection: report of two cases. Int J Infec Dis 13(6):e501–e503. Epub 2009 Jun 4

    Article  Google Scholar 

  74. Pillay SV (1978) Hyperinfection with Strongyloides stercoralis. A report of 3 cases. S Afr Med J 54(16):670–672

    PubMed  CAS  Google Scholar 

  75. Plumelle Y, Edouard A (1996) Strongyloides stercoralis dans la leucémie/lymphome T de l’adulte et le syndrome d’immunodéficience acquise. Rev Med Int 17(2):25–29

    Google Scholar 

  76. Plumelle Y, Gonin C, Edouard A, et al (1997) Effect of Strongyloides stercoralis infection and eosinophilia on age at onset and prognosis of adult T-cell leukemia. Am J Clin Pathol 107(1):81–87

    PubMed  CAS  Google Scholar 

  77. Porto AF, Neva FA, Bittencourt H, et al (2001) HTLV-1 decreases Th2 type of immune response in patients with strongyloidiasis. Parasite Immunol 23(9):503–507

    Article  PubMed  CAS  Google Scholar 

  78. Porto MA, Muniz A, Oliveira JÚnior J, Carvalho EM (2002) Clinical and immunological consequences of the association between HTLV-1 and strongyloidiasis. Rev Soc Bras Med Trop 35(6):641–649. Epub 2003 Feb 26 (article en portugais)

    Article  PubMed  Google Scholar 

  79. Porto AF, Santos SB, Alcantara L, et al (2004) HTLV-1 modifies the clinical and immunological response to schistosomiasis. Clin Exp Immunol 137(2):424–429

    Article  PubMed  CAS  Google Scholar 

  80. Porto AF, Santos SB, Muniz AL, et al (2005) Helminthic infection down-regulates type 1 immune responses in human T cell lymphotropic virus type 1 (HTLV-1) carriers and is more prevalent in HTLV-1 carriers than in patients with HTLV-1-associated/tropical spastic paraparesis. J Infect Dis 191(4):612–618. Epub 2005 Jan 10

    Article  PubMed  Google Scholar 

  81. Quiñones Soto RA, Harrington PT, Gutiérrez Núñez JJ, et al (1981) Strongyloidiasis in the immunologically compromised patient. Bol Asoc Med PR (Puerto Rico) 73(11):562–566 (article en espagnol)

    Google Scholar 

  82. Ratner L, Grant C, Zimmerman B, et al (2007) Effect of treatment of Strongyloides infection on HTLV-1 expression in a patient with adult T-cell leukemia. Am J Hematol 82(10):929–931

    Article  PubMed  CAS  Google Scholar 

  83. Rezende SA, Oliveira VR, Silva AM, et al (1997) Mice lacking the gamma interferon receptor have an impaired granulomatous reaction to Schistosoma mansoni infection. Infect Immun 65(8): 3457–3461

    PubMed  CAS  Google Scholar 

  84. Richter J, Schwarz U, Duwe S, et al (2005) Recurrent strongyloidiasis as an indicator of HTLV-1 infection. Dtsh Med Wochenschr 130(16):1007–1010 (article en allemand)

    Article  CAS  Google Scholar 

  85. Rivera E, Maldonado N, Vélez-García E, et al (1970) Hyperinfection syndrome with Strongyloides stercoralis. Ann Med Int 72(2):199–204

    CAS  Google Scholar 

  86. Robinson RD, Lindo JF, Neva FA, et al (1994) Immunoepidemiologic studies of Strongyloides stercoralis and human T lymphotropic virus type 1 infections in Jamaica. J Infect Dis 169(3):692–696

    Article  PubMed  CAS  Google Scholar 

  87. Rotman HL, Yutanawiboonchai W, Brigandi RA, et al (1996) Strongyloides stercoralis: eosinophil-dependent immunemediated killing of third stage larvae in BALB/cByJ mice. Exp Parasitol 82(3):267–278

    Article  PubMed  CAS  Google Scholar 

  88. Sato Y, Shiroma Y (1989) Concurrent infections with Strongyloides and T-cell leukemia virus and their possible effect on immune responses of host. Clin Immunol Immunopath 52(2):214–224

    Article  CAS  Google Scholar 

  89. Sato Y, Shiroma Y, Kiyuna S, et al (1994) Reduced efficacy of chemotherapy might accumulate concurrent HTLV-1 infection among strongyloidiasis patients in Okinawa, Japan. Trans R Soc Trop Med Hyg 88(1):59

    Article  PubMed  CAS  Google Scholar 

  90. Sato Y, Kobayashi J, Toma H, Shiroma Y (1995) Efficacy of stool examination for detection of Strongyloides infection. Am J Trop Med Hyg 53(3):248–250

    PubMed  CAS  Google Scholar 

  91. Satoh M, Tsukidate S, Fujita K, Yamamoto K (1991) Strongyloidiasis influences the elevation of adult T-cell leukemia-associated antigen antibody titer. Int Arch Allergy Appl Immunol 96(1):95–96

    Article  PubMed  CAS  Google Scholar 

  92. Satoh M, Toma H, Sato Y, et al (2002) Reduced efficacy of treatment of strongyloidiasis in HTLV-1 carriers related to enhanced expression of IFN-gamma and TGF-beta1. Clin Exp Immunol 127(2):354–359

    Article  PubMed  CAS  Google Scholar 

  93. Satoh M, Toma H, Sugahara K (2002) Involvement of IL-2/ IL-2R system activation by parasite antigen in polyclonal expansion of CD4(+)25(+) HTLV-1-infected T-cells in human carriers of both HTLV-1 and S. stercoralis. Oncogene 21(16): 2466–2475

    Article  PubMed  CAS  Google Scholar 

  94. Satoh M, Kiyuna S, Shiroma Y, et al (2003) Predictive markers for development of strongyloidiasis in patients infected with both Strongyloides stercoralis and HTLV-1. Clin Exp Immunol 133(3):391–396

    Article  PubMed  CAS  Google Scholar 

  95. Shikiya K, Zaha O, Nimura S (1994) Clinical study on ivermectin against 125 strongyloidiasis patients. 68(1):13–20 (article en japonais)

    CAS  Google Scholar 

  96. Tajima K, Tominaga S, Suchi T, et al (1986) HTLV-1 carriers among migrants from an ATL-endemic area to ATL nonendemic metropolitan areas in Japan. Int J Cancer 37(3):383–387

    Article  PubMed  CAS  Google Scholar 

  97. Terashima A, Alvarez H, Tello R, et al (2002) Treatment failure in intestinal strongyloidiasis: an indicator of HTLV-1 infection. Int J Infect Dis 6(1):28–30

    Article  PubMed  Google Scholar 

  98. Thomas MC, Costello SA (1998) Disseminated strongyloidiasis arising from a single dose of dexamethasone before stereotactic radiosurgery. Int J Clin Prat 52(7):520–521

    CAS  Google Scholar 

  99. Trajman A, MacDonald TT, Elia CC (1997) Intestinal immune cells in Strongyloides stercoralis infection. J Clin Pathol 50(12): 991–995

    Article  PubMed  CAS  Google Scholar 

  100. Troncoso García E, Muñoz Medina L, Callejas Rubio JL, et al (2000) Klebsiella pneumoniae meningitis, Strongyloides stercoralis infection and HTLV-1. Med Clin (Barc) 115(4):158 (article en espagnol)

    Google Scholar 

  101. Vadlamudi RS, Chi DS, Krishnaswamy G (2006) Intestinal strongyloidiasis and hyperinfection syndrome. Clin Mol Allergy 4:8

    Article  PubMed  Google Scholar 

  102. Viney ME, Brown M, Omoding NE, et al (2004) Why does HIV infection not lead to disseminated strongyloidiasis? J Infect Dis 190(12):2175–2180. Epub 2004 Nov 16

    Article  PubMed  Google Scholar 

  103. Watanabe T (1997) HTLV-1-associated diseases. Int J Hematol 66(3):257–278

    Article  PubMed  CAS  Google Scholar 

  104. Yamaguchi K, Seiki M, Yoshida M, et al (1984) The detection of human T cell leukemia virus proviral DNA and its application for classification and diagnosis of T cell malignancy. Blood 63(5):1235–1240

    PubMed  CAS  Google Scholar 

  105. Yamaguchi K, Yoshioka R, Kiyokawa T, et al (1986) Lymphoma type adult T-cell leukemia—a clinicopathologic study of HTLV related T-cell type malignant lymphoma. Hematol Oncol 4(1):59–65

    Article  PubMed  CAS  Google Scholar 

  106. Yamaguchi K, Matutes E, Catovsky D, et al (1987) Strongyloides stercoralis as candidate cofactor for HTLV-I-induced leukaemogenesis. Lancet 2(8550):94–95

    Article  PubMed  CAS  Google Scholar 

  107. Yamano Y, Nagai M, Brennan M, et al (2002) Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99(1):88–94

    Article  PubMed  CAS  Google Scholar 

  108. Yasunaga J, Matsuoka M (2007) Human T-cell leukemia virus type 1 induces adult T-cell leukemia: from clinical aspects to molecular mechanisms. Cancer Control 14(2):133–140

    PubMed  Google Scholar 

  109. Yoshida M (2000) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496

    Article  Google Scholar 

  110. Zaha O, Hirata T, Uchima N, et al (2004) Comparison of anthelmintic effects of two doses of ivermectin on intestinal strongyloidiasis in patients negative or positive for anti-HTLV-1 antibody. J Infect Chemother 10(6):348–351

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -F. Pays.

About this article

Cite this article

Pays, J.F. Co-infections HTLV-1-Strongyloides stercoralis . Bull. Soc. Pathol. Exot. 104, 188–199 (2011). https://doi.org/10.1007/s13149-011-0175-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13149-011-0175-z

Mots clés

Keyword

Navigation