Skip to main content
Log in

Sediment thickness of the Tuz Gölü Basin using gravity data

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The Bouguer gravity data of this study were obtained from the World Gravity Map (WGM 2012) to investigate the sediment thickness beneath the basin of the Tuz Gölü. First of all, the average depths of the intra-sediment intermediate layers and sediment lower boundary topographies of the study area were calculated by taking the amplitude spectrum of gravity anomaly data of the study area. The total horizontal derivative method was used to reveal the discontinuities below the sediment and at the top of the basement. This method was applied to the gravity data caused by the basement units obtained by filtering the gravity anomaly data. Lineaments consisting of high-amplitude values are taken into account in the total horizontal derivative anomaly map to display the discontinuity boundaries at the desired depths. Within the scope of this study carried out in the research area, new discontinuity boundaries were determined. On the other hand, the basement upper surface topography of the study area, namely the sediment lower boundary topography, was mapped using the Parker–Oldenburg inversion algorithm. The accuracy of the depth values calculated by the inverse solution was tested by applying the Normalized Full Gradient (NFG) method to the two specified profiles. The results obtained with these two depth determination methods were approximately similar. Thus, the sediment thickness found using both methods was found to be in the range of 4–10.5 km. Therefore, the sediment thickness calculated from the inverse solution and NFG methods is compatible with each other within the error limits of ± 0.1 km under these two profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altınoğlu FF, Sarı M, Aydın A (2015) Detection of lineaments in Denizli Basin of Western Anatolia Region using bouguer gravity data. Pure Appl Geophys 172:415–425

    Article  Google Scholar 

  • Arısoy MÖ, Dikmen Ü (2011) Potensoft: MATLAB-based software for potential field data processing, modelling and mapping. Computer Geosci 37:935–942

    Article  Google Scholar 

  • Aydemir A, Ateş A (2005) Preliminary evaluation of Central Anatolian basins in Turkey by using the gravity and magnetic data. J Balkan Geophys Soc 8:7–19

    Google Scholar 

  • Aydemir A, Ateş A (2006) Structural interpretation of the Tuzgölü and Haymana Basins, Central Anatolia, Turkey, using seismic, gravity and aeromagnetic data. Earth Planets Space 58:951–961

    Article  Google Scholar 

  • Aydemir A, Ateş A (2008) Determination of hydrocarbon prospective areas in the Tuzgolu (Saltlake) Basin, Central Anatolia, by using geophysical data. J Petrol Sci Eng 62:36–44

    Article  Google Scholar 

  • Aydın A (2007) Interpretation of gravity anomalies with the normalized full gradient (NFG) method and an example. Pure Appl Geophys 164:2329–2344

    Article  Google Scholar 

  • Aydın A, Sipahi F, Karslı H, Gelişli K, Kadirov F. (1997) Interpretation of magnetic anomalies on covered fields using normalized full gradient method. International geoscience conference and exhibition, 15–18 September 1997. Moscow, D3 p 4

  • Berezkin VM (1973) Using in oil-gas exploration of gravity method 210 p. Nedra, Moscow

    Google Scholar 

  • Berezkin VM (1988) Method of the total gradient in geophysical prospecting 180 p. Nedra, Moscow

    Google Scholar 

  • Berezkin VM, Buketov AP (1965) Application of the harmonical analysis for the interpretation of gravity data. Appl Geophys 46:161–166

    Google Scholar 

  • Berezkin VM, Filatov VG (1992) The method and the technology for areal processing of gravimagnetic data 110 p. Neftegeofizika, Moscow

    Google Scholar 

  • Berezkin VM, Kirichek MA, Kunarov AA (1978) Application of geophysical methods for directly oil and gas exploration 300 p. Nedra, Moscow

    Google Scholar 

  • Bhattacharyya BK (1967) Some general properties of potential fields in space and frequency domain: a review. Geoexploration 5(3):127–143

    Article  Google Scholar 

  • Bonvalot S, Balmino G, Briais A, Kuhn M, Peyrefitte A, Vales N, Biancale R, Gabalda G, Reinquin F, Sarrailh M. (2012) World gravity map. BGI-CGMW-CNES-IRD (Eds). Commission for the Geological Map of the World, Paris

  • Çamur MZ, Mutlu H (1996) Major-ion geochemistry and mineralogy of the Salt Lake (Tuz Gölü) basin, Turkey. Chem Geol 127:313–329

    Article  Google Scholar 

  • Çemen I, Goncuoğlu M, Dirik K (1999) Structural evolution of the Tuzgolu Basin in Central Anatolia, Turkey. J Geol 107:693–706

    Article  Google Scholar 

  • Çiner A, Aydar E, Dirik K, Rojay B, Ozsayin E, Ersoy O, Cubukcu E, Kutluay A, Yildirim C. (2011) Vertical anatolian movement project. TOPOEUROPE - ESF (European Science Foundation)—TUBİTAK Co-Project No: 107Y333

  • Cordell L, Grauch VJS (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysicists, Texas, pp 181–197

    Chapter  Google Scholar 

  • Dinçer B. (2019) Tuzgölü Havzasında Bazı Ana Fay Zonlarının Gravite ve Manyetik Yöntemler ile Belirlenmesi ve Tektonik Yorumu, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Ankara Üniversitesi, Türkiye

  • Dirik K, Erol O (2000) Tuzgolu ve civarının tektonomorfolojik evrimi [Tectonomorphologic evolution of Tuzgolu and surrounding area]. Haymana-Tuzgolu-Ulukıflla Basenleri Uygulamalı Calışma. Turkiye Petrol Jeologları Derneği, Ozel Sayı 5:27–46 (In Turkish with English abstract)

    Google Scholar 

  • Dirik K, Goncuoğlu M (1996) Neotectonic characteristics of central Anatolia. Int Geol Rev 38:807–817

    Article  Google Scholar 

  • Elmas A (2018) Kıbrıs Adasındaki Yapısal Süreksizliklerin EGM08 Gravite Verileri Kullanılarak Belirlenmesi. Jeoloji Mühendisliği Dergisi 42:17–32. https://doi.org/10.24232/jmd.434135

    Article  Google Scholar 

  • Elmas A (2019) Edge position detection and depth estimation from gravity data with application to mineral exploration. Carbonates Evaporites. https://doi.org/10.1007/s13146-018-0480-8

    Article  Google Scholar 

  • Elmas A, Babacan AE (2021) Manyetik özellik gösteren gömülü bir cismin Sınır Analizi ve NTG Yöntemleriyle konumunun belirlenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 8:196–202

    Google Scholar 

  • Elmas A, Karslı H, Kadirov FA (2018) Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data. Acta Geophys. https://doi.org/10.1007/s11600-017-0104-z

    Article  Google Scholar 

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F. (2013) Açıklamalı 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30. Ankara- Türkiye

  • Fernández-Blanco D, Bertotti G, Çiner TA (2013) Cenozoic tectonics of the Tuz Gölü Basin (Central Anatolian Plateau, Turkey). Turkish J Earth Sci 22:715–738

    Google Scholar 

  • Gomez-Ortiz D, Agarwal BNP (2005) 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker–Oldenburg’s algorithm. Computer Geosci 31:513–520

    Article  Google Scholar 

  • Görür N, Oktay F, Seymen İ, Şengor AMC (1984) Palaeotectonic evolution of the Tuzgolu basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure. Geol Soc, London, Special Publ 17:467–482

    Article  Google Scholar 

  • Gürbüz C, Evans JR (1991) A seismic refraction study of the western Tuz Golu basin, Central Turkey. Geophys J Int 106:239–251

    Article  Google Scholar 

  • Huvaz O (2009) Comparative petroleum systems analysis of the interior basins of Turkey: implications for petroleum potential. Mar Pet Geol 26:1656–1676

    Article  Google Scholar 

  • Işık V (2009) Ductile shear zone in granitoid of central anatolian ctysalline complex, Turkey: implications for late cretaceous extensional deformation. J Asian Earth Sci 34:507–521

    Article  Google Scholar 

  • Işık V, Uysal T, Çağlayan A, Seyitoğlu G (2014) The evolution of intra-plate fault system in central Turkey: structural evidence and Ar-Ar and Rb-Sr age constrains for the savcılı Fault Zone. Tectonics 33(10):1875–1899. https://doi.org/10.1002/2014TC003565

    Article  Google Scholar 

  • Karner GD, Watts AB (1983) Gravity anomalies and flexure of the lithosphere at mountain ranges. J Geophys Res: Solid Earth 88(B12):10449–10477

    Article  Google Scholar 

  • Molovichko AK, Kostitsin VI, Tarunina OL (1989) Detailed gravity prospecting for oil and gas 150 p. Nedra, Moscow

    Google Scholar 

  • Mudretsova EA, Varlamov AS, Filatov VG, Komarova GM (1979) The interpretation of high precision data over the nonstructural oil and gas reservoirs 250 p. Nedra, Moscow

    Google Scholar 

  • Nabighian MN (1972) The Analytic Signal of two dimensional magnetic bodies with polygonal cross section: Its properties and use for automated anomaly interpretation. Geophysics 37:507–517

    Article  Google Scholar 

  • Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39:526–536

    Article  Google Scholar 

  • Önal K, Buyuksarac A, Aydemir A, Ateş A (2008) Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods. Tectonophysics 460:186–197

    Article  Google Scholar 

  • Oruç B, Keskinsezer A, (2007) Normalize Tam Gradyent Yöntemi İle Petrol Sahalarindaki Manyetik Temel Kaya Ondülasyonunun Modellenmesi IPETGAS 2007

  • Oruç B, Sönmez T (2017) The rheological structure of the lithosphere in the Eastern Marmara region, Turkey. J Asian Earth Sci 139:183–191

    Article  Google Scholar 

  • Oruç B, Sertçelik İ, Kafadar Ö, Selim HH (2013) Structural interpretation of the Erzurum Basin, Eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. J Appl Geophys 88:105–113

    Article  Google Scholar 

  • Oruç B, Gomez-Ortiz D, Petit C (2017) Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolian and surrounding region. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2017.09.015

    Article  Google Scholar 

  • Özsayın E, Dirik K (2007) Quaternary activity of the Cihanbeyli and Yeniceoba Fault Zones: İnonu-Eskisehir fault system, Central Anatolia. Turkish J Earth Sci 16:471–492

    Google Scholar 

  • Özsayın E, Dirik K (2011) The role of oroclinal bending in the structural evolution of the Central Anatolian Plateau: evidence of a regional changeover from shortening to extension. Geol Carpath 62:345–359

    Article  Google Scholar 

  • Parker RL (1973) The rapid calculation of potential anomalies. Geophys J Int 31:447–455

    Article  Google Scholar 

  • Şeren A, Çavşak H, Jacobyb W (2000) Calculation and inversion of two-dimensional gravity in the vicinity of Lake Tuz, Turkey. J Geodyn 29:87–102

    Article  Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Strakhov VN, Grigoreva OM, Lapina MI (1977) Determination of singular points of two dimensional potential fields. Prikl Geofiz 85:96–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Elmas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmas, A. Sediment thickness of the Tuz Gölü Basin using gravity data. Carbonates Evaporites 37, 36 (2022). https://doi.org/10.1007/s13146-022-00783-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00783-4

Keywords

Navigation