Skip to main content

Advertisement

Log in

Sedimentological and geochemical approaches for determination of the palaeoceanographic and palaeoclimatic conditions of Lower Cretaceous marine deposits in the eastern part of Sakarya Zone, NE Turkey

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Upper Jurassic–Lower Cretaceous carbonate successions are widely exposed throughout the Sakarya Zone, Northern Turkey. The carbonates are considered as invaluable archives of palaeoceanographic and palaeoclimatic conditions of Tethys Ocean. We, here, present new micropaleontological, microfacies, and stable isotope data (δ18O and δ13C) of Lower Cretaceous carbonate succession of the eastern part of Sakarya Zone, NE Turkey. The studied Lower Cretaceous carbonates are characterized by, from bottom to top, microfacies associations within Unit 1 and Unit 2 that were deposited in the Barremian–Albian. Unit 1 (Barremian–Aptian) is represented by the predominance of benthic foraminiferal associations and shallow marine organisms. Unit 1 shows alternations of different microfacies, including non-laminated mudstone (MF-1), autochthonous bioclastic-foraminiferal grainstone and packstone (MF-2) and intraclastic grainstone/packstone (MF-3). An abrupt palaeoenvironment change is represented by Unit 2 with deeper water microfacies associations consisting of dark grey limestones with chert nodules, mud-rich texture, reworked skeletal fragments, sponge spiculitics and a presence of the planktonic organism. Unit 2 (Albian) displays two different microfacies: reworked bioclastic packstone/wackestone microfacies (MF-4) and gradually overlying sponge spiculitic wackestone–mudstone (MF-5). The integration of microfacies and micropaleontological data implies that the Barremian–Albian interval represents the inner platform to the slope palaeoceanographic conditions revealing an overall transgressive trend, which is consistent with a significant rise in the sea level throughout Tethys margin during the Albian. The Albian sea-level rise is likely triggered by the sedimentary evolution of the basin due to the extensional tectonic regime in NE Turkey. Besides, the palaeo-temperatures are measured by the δ18O data that were obtained from well-preserved belemnite samples in Unit 2. Palaeotemperature analysis presents a range of 18.30–26.77 °C with an average of 23.13 °C during the Albian. Our palaeo-temperature data are conformable with the warm Cretaceous climatic conditions, which are recorded in the different parts of the Tethys margin. Therefore, this contribution provides the first insight into the palaeoclimatic conditions of the Tethys ocean for the eastern part of the Sakarya, NE Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altıner D, Kocyigit A, Farinacci A, Nicosia U, Conti MA (1991) Jurassic-Lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of north-western Anatolia (Turkey). Geol Romana 27:13–80

    Google Scholar 

  • Altıner D, Koçyiğit A, Farinacci A, Nicosia U, Conti MA (1991) Jurassic, lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of north-western Anatolia. Geol Romana 28:13–80

    Google Scholar 

  • Altiner D, Özkan-Altiner S, Koçyiğit A (2000) Late Permian foraminiferal biofacies belts in Turkey: palaeogeographic and tectonic implications. Geol Soc Lond Spec Publ 173(1):83–96

    Article  Google Scholar 

  • Arnaud–Vanneau A, ver Sliter WV (1995) Early Cretaceous shallow–water benthic foraminifers and fecal pellets from leg 143 compared with coeval faunas from the Pacific Basin, Central America, and the Tethys In: Winterer EL, Sager WW, Firth JV, Simon JM (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 143, pp 537–564

  • Attendorn HG, Bowen RNC (1997) Isotopes in palaeoclimatology and palaeoecology. Radioactive and stable ısotope geology. Springer, Dordrecht, pp 397–418

    Chapter  Google Scholar 

  • Bomou B, Deconinck JF, Pucéat E, Amédro F, Joachimski MM, Quillévéré F (2016) Isotopic seawater temperatures in the Albian Gault Clay of the Boulonnais (Paris Basin): palaeoenvironmental implications. Proc Geol Assoc 127(6):699–711

    Article  Google Scholar 

  • Bosence D (2005) A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic. Sediment Geol 175(1–4):49–72

    Article  Google Scholar 

  • Bucur II, Cociuba I (1988) La plate-forme carbonate du Cretace inferieur des Monts Padurea Craiului (Monts Apuseni, Roumanie). Biostratigraphie etConfiguration. Studia Universitatis Babeş-Bolyai, Geologia, XLIII(2), pp 89–100

  • Clarke LJ, Jenkyns HC (1999) New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology 27(8):699–702

    Article  Google Scholar 

  • Curry GB, Fallick AE (2002) Use of stable oxygen isotope determinations from brachiopod shells in palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 182(1–2):133–143

    Article  Google Scholar 

  • Davies PJ, Symonds PA, Feary DA, Pigram CJ (1989) The evolution of the carbonate platforms of northeast Australia. SEPM, London

    Book  Google Scholar 

  • Dokuz A, Karsli O, Chen B, Uysal İ (2010) Sources and petrogenesis of Jurassic granitoids in the Yusufeli area, Northeastern Turkey: Implications for pre-and post-collisional lithospheric thinning of the eastern Pontides. Tectonophysics 480(1–4):259–279

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional textures

  • Erba E, Castradori D, Guasti G, Ripepe M (1992) Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay formation (southern England). Palaeogeogr Palaeoclimatol Palaeoecol 93(1–2):47–69

    Article  Google Scholar 

  • Erbacher J, Friedrich O, Wilson PA, Lehmann J, Weiss W (2011) Short-term warming events during the boreal Albian (mid-Cretaceous). Geology 39(3):223–226

    Article  Google Scholar 

  • Eren M, Tasli K (2002) Kilop cretaceous hardground (Kale, Gümüshane, NE Turkey): description and origin. J Asian Earth Sci 20(5):433–448

    Article  Google Scholar 

  • Flugel E (2004) Microfacies data: fabrics. In: Microfacies of carbonate rocks. Springer, Berlin, Heidelberg, pp 177–242

    Google Scholar 

  • Flügel E (2012) Microfacies analysis of limestones. Springer Science & Business Media

  • Föllmi KB (2012) Early Cretaceous life, climate and anoxia. Cretac Res 35:230–257

    Article  Google Scholar 

  • Foury G (1968) Le Cretace inferieur des alpilles contribution a l’etude stratigraphique et micropaleontologique. Geobios 1:119–164

    Article  Google Scholar 

  • Görür N (1988) Timing of opening of the Black Sea basin. Tectonophysics 147(3–4):247–262

    Article  Google Scholar 

  • Gorur N (1993) Cretaceous red pelagic carbonates of northern Turkey: their place in the opening history of the Black Sea. Ecl Geol Helv 86:819–838

    Google Scholar 

  • Gregg JM, Shelton KL (1990) Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri. J Sediment Res 60(4):549–562

    Google Scholar 

  • Güven İH (1998) 1/100.000 Ölçekli açınsama nitelikli türkiye jeoloji haritaları, trabzon-C29 ve C29 paftaları, MTA Yayınları, Ankara

  • Han Z, Hu X, Li J, Garzanti E (2016) Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeogr Palaeoclimatol Palaeoecol 456:1–20

    Article  Google Scholar 

  • Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58

    Article  Google Scholar 

  • Hashim MS, Kaczmarek SE (2020) Experimental stabilization of carbonate sediments to calcite: Insights into the depositional and diagenetic controls on calcite microcrystal texture. Earth Planet Sci Lett 538:116235

    Article  Google Scholar 

  • Herrle JO, Schröder-Adams CJ, Davis W, Pugh AT, Galloway JM, Fath J (2015) Mid-Cretaceous High Arctic stratigraphy, climate, and oceanic anoxic events. Geology 43(5):403–406

    Article  Google Scholar 

  • Hippolyte JC, Espurt N, Kaymakci N, Sangu E, Müller C (2016) Cross-sectional anatomy and geodynamic evolution of the Central Pontide orogenic belt (northern Turkey). Int J Earth Sci 105(1):81–106

    Article  Google Scholar 

  • Holser WT (1997) Geochemical events documented in inorganic carbon isotopes. Palaeogeog Palaeoclimatol Palaeoecol 132(1–4):173–182

    Article  Google Scholar 

  • Hu X, Wagreich M, Yilmaz IO (2012) Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretac Res 38:1–6

    Article  Google Scholar 

  • Huber BT, Norris RD, MacLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30(2):123–126

    Article  Google Scholar 

  • Huber BT, MacLeod KG, Watkins DK, Coffin MF (2018) The rise and fall of the Cretaceous Hot Greenhouse climate. Glob Planet Change 167:1–23

    Article  Google Scholar 

  • Husinec A, Sokač B (2006) Early Cretaceous benthic associations (foraminifera and calcareous algae) of a shallow tropical-water platform environment (Mljet Island, southern Croatia). Cretac Res 27:418–441

    Article  Google Scholar 

  • Husinec A, Sokač B (2006) Early Cretaceous benthic associations (foraminifera and calcareous algae) of a shallow tropical-water platform environment (Mljet Island, southern Croatia). Cretac Res 27(3):418–441

    Article  Google Scholar 

  • Jarvis IAN, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian-Campanian (996–706 Ma). Geol Mag 143(5):561–608

    Article  Google Scholar 

  • Jenkyns HC (2018) Transient cooling episodes during Cretaceous oceanic anoxic events with special reference to OAE 1a (Early Aptian). Phil Trans R Soc A 376(2130):20170073

    Article  Google Scholar 

  • Jenkyns HC, Dickson AJ, Ruhl M, Van den Boorn SH (2017) Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian–Turonian, Late Cretaceous). Sedimentology 64(1):16–43

    Article  Google Scholar 

  • Kandemir R, Özyurt M, Karsli O (2021) Sedimentological and geochemical characteristics of lower jurassic sandstones from gümüşhane, NE Turkey: implications for source to sink processes, paleoenvironmental conditions, provenance and tectonic settings. Int Geo Rev 1–24

  • Kara-Gülbay R, Kırmacı MZ, Korkmaz S (2012) Organic geochemistry and depositional environment of the Aptian bituminous limestone in the Kale Gümüşhane area (NE-Turkey): an example of lacustrine deposits on the platform carbonate sequence. Org Geochem 49:6–17

    Article  Google Scholar 

  • Karakitsios V, Kafousia N, Tsikos H (2010) A review of oceanic anoxic events as recorded in the Mesozoic sedimentary record of mainland Greece. Hellenic J Geosci 45:123

    Google Scholar 

  • Kaya MY, Altiner D (2014) Terebella lapilloides Münster, 1833 from the Upper Jurassic-Lower Cretaceous İnaltı carbonates, northern Turkey: its taxonomic position and paleoenvironmental-paleoecological significance. Turk J Earth Sci 23(2):166–183

    Article  Google Scholar 

  • Keller G (2008) Cretaceous climate, volcanism, impacts, and biotic effects. Cretac Res 29(5–6):754–771

    Article  Google Scholar 

  • Keller G, Punekar J, Mateo P (2016) Upheavals during the Late Maastrichtian: volcanism, climate and faunal events preceding the end-Cretaceous mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 441:137–151

    Article  Google Scholar 

  • Kennett JP, Shackleton NJ (1976) Oxygen isotopic evidence for the development of the psychrosphere 38 Myr ago. Nature 260(5551):513–515

    Article  Google Scholar 

  • Kessels K, Mutterlose J, Michalzik D (2006) Early Cretaceous (Valanginian-Hauterivian) calcareous nannofossils and isotopes of the northern hemisphere: proxies for the understanding of Cretaceous climate. Lethaia 39(2):157–172

    Article  Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61(16):3461–3475

    Article  Google Scholar 

  • Kirmaci MZ, Koch R, Bucur JI (1996) An Early Cretaceous section in the Kircaova Area (Berdiga Limestone, NE-Turkey) and its correlation with platform carbonates in W-Slovenia. Facies 34(1):1–21

    Article  Google Scholar 

  • Kırmacı MZ, Yıldız M, Kandemir R, Eroğlu-Gümrük T (2018) Multistage dolomitization in Late Jurassic-Early Cretaceous platform carbonates (Berdiga Formation), Başoba yayla (Trabzon), NE Turkey: implications of the generation of magmatic arc on dolomitization. Mar Pet Geol 89:515–529

    Article  Google Scholar 

  • Kırmacı MZ (1992) Sedimentological investigation of the Upper Jurassic–Lower Cretaceous Berdiga Limestone in the Alucra-Gümüşhane-Bayburt regions Eastern Pontides, NE, Turkey (Doctoral dissertation, Ph. D. thesis, Karadeniz Technical University, Trabzon (unpublished)(in Turkish with English abstract))

  • Kirmaci MZ (2000) Lithofacies features and evolution of the late jurassic carbonate platform, uluçayır area (Bayburt, Eastern Pontides). Geol Bull Turkey 43(2):33–47

  • Koch R, Bucur II, Kirmaci MZ, Eren M, Tasli K (2008) Upper Jurassic and Lower Cretaceous carbonate rocks of the Berdiga Limestone-Sedimentation on an onbound platform with volcanic and episodic siliciclastic influx. Biostratigraphy, facies and diagenesis (Kircaova, Kale-Gümüşhane area; NE-Turkey). Neues Jahrb Geol Paläontol Abh 247(1):23–61

    Article  Google Scholar 

  • Koçyiğit A, Altıner D (2002) Tectonostratigraphic evolution of the North Anatolian Palaeorift (NAPR): hettangian-Aptian passive continental margin of the northern Neo-Tethys, Turkey. Turk J Earth Sci 11(3):169–191

    Google Scholar 

  • Lin M, Li J (2019) Late Jurassic-Early Cretaceous palynofloras in the Lhasa Block, central Xizang, China and their bearing on palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 515:95–106

    Article  Google Scholar 

  • Marshall JD, Brenchley PJ, Mason P, Wolff GA, Astini RA, Hints L, Meidla T (1997) Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 132(1–4):195–210

    Article  Google Scholar 

  • Masse JP, Tüysüz O, Fenerci-Masse M, Özer S, Sari B (2009) Stratigraphic organization, spatial distribution, palaeoenvironmental reconstruction, and demise of Lower Cretaceous (Barremian-lower Aptian) carbonate platforms of the Western Pontides (Black Sea region, Turkey). Cretac Res 30(5):1170–1180

    Article  Google Scholar 

  • Maurer F, Van Buchem FS, Eberli GP, Pierson BJ, Raven MJ, Larsen PH, Vincent B (2013) Late Aptian long-lived glacio-eustatic lowstand recorded on the Arabian Plate. Terra Nova 25(2):87–94

    Article  Google Scholar 

  • Moullade M (1974) Zones de foraminifères du Crétacé inférieur mésogéen. C R Acad Sci Paris (Série D) 278:1813–1816

    Google Scholar 

  • Mutterlose J, Bornemann A, Herrle J (2009) The Aptian-Albian cold snap: evidence for. Neues Jahrb Geol Paläontol Abh 252(2):217–225

    Article  Google Scholar 

  • Okay AI (1996) Paleo-and Neo-Tethyan events in northwest Turkey: geological and geochronological constraints. Tectonics of Asia, 420-441

  • Okay AI, Sahinturk O (1997) AAPG Memoir 68: regional and petroleum geology of the black sea and surrounding region. Chapter 15: geology of the eastern pontides

  • Okay AI, Nikishin AM (2015) Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int Geol Rev 57(5–8):1051–1076

    Article  Google Scholar 

  • Okay AI, Tüysüz O (1999) Tethyan sutures of northern Turkey. Geol Soc Lond Spec Publ 156(1):475–515

    Article  Google Scholar 

  • Özyurt M, Kirmaci MZ, Yılmaz İÖ, Kandemir R (2019a) Sedimentological and geochemical records of lower cretaceous carbonate successions around trabzon (NE Turkey): ımplications for paleoenvironmental evolution and paleoclimatological conditions of Tethys. Patterns and mechanisms of climate, paleoclimate and paleoenvironmental changes from low-latitude regions. Springer, Cham, pp 19–21

    Chapter  Google Scholar 

  • Özyurt M, Al-Aasm IS, Kirmaci MZ. (2019b) Diagenetic evolution of UpperJurassic–Lower Cretaceous Berdiga formation (NE Turkey): Petrographic and geochemical evidence. In: Conference of the Arabian Journal of Geosciencesi, Springer, Cham, pp 175–177

  • Özyurt M, Kırmacı MZ, Al-Aasm IS (2019c) Geochemical characteristics of Upper Jurassic–Lower Cretaceous platform carbonates in hazine mağara, Gümüşhane (northeast Turkey): implicationsfor dolomitization and recrystallization. Can J Earth Sci 56(3):306–320

    Article  Google Scholar 

  • Özyurt M, Kırmacı MZ, Al-Aasm I, Hollis C, Taslı K, Kandemir R (2020) REE characteristics of lower cretaceous limestone succession in gümüşhane, NE Turkey: implications for ocean paleoredox conditions and diagenetic alteration. Minerals 10(8):683

    Article  Google Scholar 

  • Pelin S (1977) Geological study of the area southeast of alucra (Giresun) with special reference to its petroleum potential. Karadeniz teknik universitesi,yerbilimleri dergisi, Jeoloji 1:15–20

  • Picard S, Garcia JP, Lécuyer C, Sheppard SM, Cappetta H, Emig CC (1998) δ18O values of coexisting brachiopods and fish: temperature differences and estimates of paleo–water depths. Geology 26(11):975–978

    Article  Google Scholar 

  • Pirrie D, Doyle P, Marshall JD, Ellis G (1995) Cool Cretaceous climates: new data from the Albian of Western Australia. J Geol Soc 152(5):739–742

    Article  Google Scholar 

  • Podlaha OG, Mutterlose J, Veizer J (1998) Preservation of delta 18 O and delta 13 C in belemnite rostra from the Jurassic/Early Cretaceous successions. Am J Sci 298(4):324–347

    Article  Google Scholar 

  • Premoli-Silva I, Sliter WV (1995) Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Palaeontogr Italica 82:1–89

    Google Scholar 

  • Price GD, Harwood E (2012) Isotopic analysis of belemnites and brachiopods from the Cretaceous (Albian) Hunstanton Red Chalk Formation (Hunstanton, Norfolk, UK). Proc Geol Assoc 123(3):479–485

    Article  Google Scholar 

  • Robinson AG, Banks CJ, Rutherford MM, Hirst JPP (1995) Stratigraphic and structural development of the Eastern Pontides Turkey. J Geol Soc 152(5):861–872

    Article  Google Scholar 

  • Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: causes and consequences. Geologie en mijnbouw 55:3-4

  • Schlager W, Ginsburg RN (1981) Bahama carbonate platforms—the deep and the past. Mar Geol 44(1–2):1–24

    Article  Google Scholar 

  • Şengör AM, Yilmaz Y, Ketin I (1980) Remnants of a Pre-Late jurassic ocean in northern Turkey: fragments of Permian-Triassic Paleo-Tethys? Geol Soc Am Bull 91(10):599

    Article  Google Scholar 

  • Şengör AC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75(3–4):181–241

    Article  Google Scholar 

  • Taslı K (1991) Stratigraphy, paleogeography and micropaleontology of Upper Jurassic–Lower Cretaceous carbonate sequence in the Gümüshane and Bayburt areas (NE Turkey) (Doctoral dissertation, Ph. D. Thesis, Karadeniz Technical University, Trabzon (unpublished)(in Turkish with English abstract))

  • Taslı K, Özsayar T (1997) Stratigraphy and paleoenvironmental setting of the Albian-Campanian deposits within the Gümüsßhane province (Eastern Pontides, NE Turkey). Turk Assoc Pet Geol Bull 9:13–29

    Google Scholar 

  • Taslı K, Özer E, Yılmaz C (1999) Biostratigraphic and environmental analysis of the Upper Jurassic-lower cretaceous carbonate sequence in the Başoba Yayla Area (Trabzon, NE Turkey). Turk J Earth Sci 8(2–3):125–135

    Google Scholar 

  • Topuz G, Altherr R, Schwarz WH, Dokuz A, Meyer HP (2007) Variscan amphibolite-facies rocks from the Kurtoğlu metamorphic complex (Gümüşhane area, Eastern Pontides, Turkey). Int J Earth Sci 96(5):861

    Article  Google Scholar 

  • Türk-Öz E, Özyurt M (2019) Palaeoenvironment reconstruction and planktonic foraminiferal assemblages of Campanian (Cretaceous) carbonate succession, Çayırbağ area (Trabzon, NE Turkey). Carbonates Evaporites 34:419–431. https://doi.org/10.1007/s13146-017-0413-y

    Article  Google Scholar 

  • Varol B, Kazancı N (1981) The litho-and biofacies properties of the Upper Jurassic-Lower Cretaceous carbonate sequence. Bull Geol Soc Turkey 24:31–38

    Google Scholar 

  • Veizer J, Godderis Y, François LM (2000) Evidence for decoupling of atmospheric CO 2 and global climate during the Phanerozoic eon. Nature 408(6813):698

    Article  Google Scholar 

  • Velić I (2007) Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe)-part 1. Geol Cro 60(1):1–60

    Article  Google Scholar 

  • Velić I (2007) Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geol Cro 60:1–113

    Article  Google Scholar 

  • Vincent B, Emmanuel L, Houel P, Loreau JP (2007) Geodynamic control on carbonate diagenesis: petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France). Sediment Geol 197(3–4):267–289

    Article  Google Scholar 

  • Vincent SJ, Guo L, Flecker R, BouDagher-Fadel MK, Ellam RM, Kandemir R (2018) Age constraints on intra-formational unconformities in Upper Jurassic-Lower Cretaceous carbonates in northeast Turkey; geodynamic and hydrocarbon implications. Mar Pet Geol 91:639–657

    Article  Google Scholar 

  • Wagreich M, Hu X, Sageman B (2011) Causes of oxic–anoxic changes in Cretaceous marine environments and their implications for Earth systems—an introduction. Sediment Geol 235(1–2):1–4

    Article  Google Scholar 

  • Wang Y, Huang C, Sun B, Quan C, Wu J, Lin Z (2014) Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Sci Rev 129:136–147

    Article  Google Scholar 

  • Yasamanov NA (1985) Drevneishiye klimaty Zemli (Most ancient climates of the Earth), 305 pp. Izdatel'stvo ‘Gidrometeoizdat’, Leningrad (1985) (in Russian)

  • Yasamanov NA and Petrosjants MA (1982) Correlation of the Jurassic and Cretaceous deposits on the basis of klimatostratigraphic data, pp 84–85, Tesisy dokladov XXVIII sessii VPO, Tashkent (1982) (in Russian) 84–85

  • Yiğitbaş E, Elmas A, Yïlmaz Y (1999) Pre-cenozoic tectono-stratigraphic components of the western pontides and their geological evolution. Geol J 34(1–2):55–74

  • Yilmaz Y (1997) Tectonics of the east Anatolian-Caspian regions. Lead Edge 16(6):889–891

    Article  Google Scholar 

  • Yilmaz İÖ (2008) Cretaceous pelagic red beds and black shales (Aptian-Santonian), NW Turkey: global oceanic anoxic and oxic events. Turk J Earth Sci 17(2):263–296

    Google Scholar 

  • Yilmaz C, Kandemir RAIF (2006) Sedimentary records of the extensional tectonic regime with temporal cessation: Gumushane Mesozoic Basin (NE Turkey). Geol Carpathica 57(1):3

    Google Scholar 

  • Yilmaz IO, Altiner D, Tekin UK, Tuysuz O, Ocakoglu F, Acikalin S (2010) Cenomanian-Turonian Oceanic Anoxic Event (OAE2) in the Sakarya Zone, northwestern Turkey: sedimentological, cyclostratigraphic, and geochemical records. Cretac Res 31(2):207–226

    Article  Google Scholar 

  • Yilmaz IO, Altiner D, Ocakoglu F (2016) Upper Jurassic-Lower Cretaceous depositional environments and evolution of the Bilecik (Sakarya Zone) and Tauride carbonate platforms, Turkey. Palaeogeogr Palaeoclimatol Palaeoecol 449:321–340

    Article  Google Scholar 

  • Yılmaz C (2002) Gümüşhane-Bayburt yöresindeki mesozoyik havzalarının tektono-sedimantolojik kayıtları ve kontrol etkenleri. Türkiye Jeoloji Bülteni 45(1):141–164

    Google Scholar 

  • Yılmaz C (2006) Platform–slope transition during rifting: the mid-Cretaceous succession of the Amasya Region (Northern Anatolia) Turkey. J Asian Earth Sci 27(2):194–206

    Article  Google Scholar 

  • Yılmaz C, Kandemir R (2002) Senköy Formasyonu: Yeni bir formasyon adlaması, 3. Stratigrafi Çalıstayı Bildiri Özleri, Ankara, 14

  • Yılmaz İÖ, Altıner D (2006) Cyclic palaeokarst surfaces in Aptian peritidal carbonate successions (Taurides, southwest Turkey): internal structure and response to mid-Aptian sea-level fall. Cretac Res 27(6):814–827

    Article  Google Scholar 

  • Zakharov YD, Shigeta Y, Nagendra R, Safronov PP, Smyshlyaeva OP, Popov AM, Afanasyeva TB (2011) Cretaceous climate oscillations in the southern palaeolatitudes: new stable isotope evidence from India and Madagascar. Cretac Res 32(5):623–645

    Article  Google Scholar 

  • Zakharov YD, Kakabadze MV, Sharikadze MZ, Smyshlyaeva OP, Sobolev ES, Safronov PP (2018) The stable O-and C-isotope record of fossils from the upper Barremian–lower Albian of the Caucasus—palaeoenvironmental implications. Cretac Res 87:55–73

    Article  Google Scholar 

Download references

Acknowledgements

Funding for the research is partly originated from TUBITAK (CAYDAG-115Y005) and Karadeniz Technical University (Turkey) (BAP Project no: 7341-FBA-2018-7341). The acknowledges are also extended to Middle East Technical University, for access to the Sedimentary Laboratories during the micro-drilling sampling period. The authors are grateful to Prof. Dr Michael Joachimski (Friedrich-Alexander Universität Erlangen-Nürnberg, Germany) for the stable isotope (δ18O and δ13C) analyses. The appreciation is extended to Prof. Dr Cathy Hollis (University of Manchester, UK) for her constructive comments, which greatly improved the quality of this paper. The authors wish to thank Prof. Dr Ihsan Al-Aasm (University of Windsor, Canada) for his support. Thanks also due to Ali Keskin and Nurbanu Ergül for their help during the field and laboratory studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Özyurt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özyurt, M., Kırmacı, M.Z., Yılmaz, İ.Ö. et al. Sedimentological and geochemical approaches for determination of the palaeoceanographic and palaeoclimatic conditions of Lower Cretaceous marine deposits in the eastern part of Sakarya Zone, NE Turkey. Carbonates Evaporites 37, 25 (2022). https://doi.org/10.1007/s13146-022-00768-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-022-00768-3

Keywords

Navigation