Skip to main content

Advertisement

Log in

Provenance, tectonic setting and source-area paleoweathering of the Upper Paleozoic sandstones in the northwestern Ordos Basin, China: evidence from whole-rock geochemistry

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

This study aims to analyze the major elements, trace elements and rare earth elements (REEs) of the Upper Shihezi and Shiqianfeng sandstones in the Ordos Basin, to infer the provenance, tectonic setting, paleoclimate, and paleoweathering intensity of the source area. Whole-rock geochemical analyses demonstrate that the provenance of the sandstones in the Upper Shihezi Formation were most likely derived from a mixed felsic-mafic source, while the sand sandstones of the Shiqianfeng Formation were mainly derived from a felsic source. Tectonic setting discrimination diagrams based on major and rare earth elements, indicate that a transitional setting from passive continental margin to active continental margin is most likely during the deposition of the Upper Shihezi sandstones, whereas an active continental margin setting for the Shiqianfeng sandstones. The index of the paleoclimate and paleoweathering suggest that the source area of the Upper Shihezi sandstones existed in semi-humid paleoclimate and strong weathering conditions, while the source areas of the sandstones from the Shiqianfeng Formation experienced arid to semi-arid paleoclimate and relatively weak weathering intensity. The chemical index of alteration values indicate that the climate that was prevailed during the deposition of the Shiqianfeng sandstones was cooler in contrast to a warmer climate during the deposition of the Upper Shihezi sandstones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Plan Sci Lett 38:1–25

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Carranza-Edwards A, Garcia D, Eby N, Balaram V, Cruz-Ortiz NL (2012) Geochemistry of beach sands along the western Gulf of Mexico, Mexico: implication for provenance. Chem Erde Geochem 72:345–362

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015) Petrography and geochemistry of sands from the Veracruz beach area, Western Gulf of Mexico. Mexico J South Am Earth Sci 64:199–216

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan LYI, Kasper-Zubilaga J, Cordoba-Saldaña L (2014) Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implications for provenance and tectonic setting. Turk J Earth Sci 23:533–558

  • Bakkiaraj D, Nagendra R, Nagarajan R, Armstrong-Altrin JS (2010) Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery basin, southern India: implication for provenance. J Geol Soc India 76:453–467

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR (1985) Rare earth element geochemistry of Austrilian Paleozonic grawacks mudrocks, provenance and tectonic control. Sed Geol 1985:45–52

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bhushan SK, Sahoo P (2010) Geochemistry of clastic sediments from Sargur supracrustals and Bababudan Group, Karnataka: Implications on Archaean Proterozoic Boundary. J Geol Soc India 75:829–840

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Elsevier Sci. Publ. Co., Amsterdam, pp 63–114

    Book  Google Scholar 

  • Cingolani CA, Manassero M, Abre P (2003) Composition, provenance, and tectonic setting of Ordovician siliciclastic rocks in the San Rafael block: southern extension of the Precordillera crustal fragment. Argentina J South Am Earth Sci 16:91–106

    Article  Google Scholar 

  • Condie KC (1993) Chemical composition and evolution of upper continental crust: Contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:2919–2940

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado. USA. Chem Geol 123:107–131

    Article  Google Scholar 

  • Cullers RL, Barrett T, Carlson R, Robinson B (1987) Rare-earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado. USA Chem Geol 63:275–297

    Article  Google Scholar 

  • Drobe M, López de Luchi MG, Steenken A, Frei R, Naumann R, Siegesmund S, Wemmera K (2009) Provenance of the Late Proterozoic to Early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental. Argentina; J South Am Earth Sci 28:239–262

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of K metasomatism in sedimentary rocks and paleosols with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc 144:531–542

    Article  Google Scholar 

  • Floyd PA, Shail R, Leveridge BE, Franke W (1991) Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination. Spec Publ - Geol Soc London 57:173–188

    Article  Google Scholar 

  • Fu X, Wang J, Zeng Y, Tan F, Feng X (2010) REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet. China Int J Coal Geol 81:191–199

    Article  Google Scholar 

  • Fu X, Wang J, Zeng Y, Tan F, He J (2011) Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet. China Chem Erde 71:21–30

    Article  Google Scholar 

  • Fu X, Wang J, Chen W, Feng X, Wang D, Song C, Zeng S (2015) Organic accumulation in lacustrine rift basin: constraints from mineralogical and multiple geochemical proxies. Int J Earth Sci 104:495–511

    Article  Google Scholar 

  • Gabo JAS, Dimalanta CB, Asio MGS, Queaño KL, Yumul GP, Imai A (2009) Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines): implications for provenance and geotectonic setting. Tectonophysics 479:111–119

    Article  Google Scholar 

  • Gao Ch, Ye D, Huang Z (2004) Kuruktag Urocean rift and mantle plume in the Tarim Basin. Pet Geol Exp 26:161–168 (in Chinese with English abstract)

    Google Scholar 

  • Girty GH, Barber RW (1993) REE, Th, and Sc evidence for the depositional setting and source rock characteristics of the Quartz Hill chert, Sierra Nevada, California. In: Johnsson MJ, Basu A (eds) Processes Controlling the Composition of Clastic Sediments, Special Papers—Geological Society of America, vol 284, pp 109–119

  • Guo Y, Wang M, Guo B, Cai Z, Hui L, He Z, Ma Y, Li W, Li B (2020) Sedimentary system characteristics and paleographic evolution of Upper Paleozoic of northern west margin, Ordos Basin. J. Northwest Univ. Nat Sci Ed 50:99–110 (in Chinese with English abstract)

    Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohomoto H (1997) Geochemistry of 1.9 Gasedimentary rocks from northern Labrador. Canada Geochem Cosmochim Acta 61:4115–4137

    Article  Google Scholar 

  • He J, Zhu X, Li M, Liu F, Ye L, Xue M (2017) Parent rock types and tectonic setting of the Permian Shanxi and Shihezi Formations in Longdong area, Ordos Basin. J Palaeogeogr 19:285–298 (in Chinese with English abstract)

    Google Scholar 

  • Hofer G, Wagreich M, Neuhuber S (2013) Geochemistry of fine-grained sediments of the Upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies. Geosci Front 4:449–468

    Article  Google Scholar 

  • Jarc S, Jerina S, Milos M, Nina Z (2017) Mineralogical and geochemical characteristics of mudstones in the Jersovec chert deposit. Geologija 60:223–234

    Article  Google Scholar 

  • Jin Z, Zhang E (2002) Paleoclimate implications of Rb/Sr ratios from lake sediments. Sci Technol Eng 2:20–22 (in Chinese with English abstract)

    Google Scholar 

  • Jin Z, Li F, Cao J, Wang S, Yu J (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implication for provenance, sedimentary sorting and catchment weathering. Geomorphology 80:147–163

    Article  Google Scholar 

  • Kroonenberg SB (1994) Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. Proc 29th Int Geol Congr Part A 69–81

  • Lerman A (1978) Lakes: chemistry, geology. Physics. Springer, New York, pp 237–289

    Book  Google Scholar 

  • Liuzhu R, He Y, Li H, Huang W (2020) Geochemical characteristics of trace elements and tectonic setting of sandstones from the Upper Ordovician Pingliang Formation, southwestern margin of Ordos Basin: a case study of the Duanjiaxia profile, Longxian County. J Palaeogeogr (chin Ed) 22:333–348 (in Chinese with English abstract)

    Google Scholar 

  • Luo JL, Shi CE., Li B, Li ZX, Li J, Han YL, Zhao JZ, Du JL, Dai YQ (2007) Yang B. H., Sedimentary sources of Chang 8 and Chang 6 in the periphery of Ordos Basin and Xifeng area: evidence from petrochemistry. Chinese Science (Series D: Geosciences) S1:62–72 (in Chinese)

  • Ma PF, Wang LC, Wang CS, Wu XH, Wei YS (2015) Organic-matter accumulation of the lacustrine lunpola oil shale, central Tibetan plateau: controlled by the paleoclimate, provenance, and drainage system. Int J Coal Geol 147–148:58–70

    Article  Google Scholar 

  • Malekzadeh M, Hosseini-Barzi M, Sadeghi A, Critelli S (2020) Geochemistry of Asara Shale member of Karaj Formation, Central Alborz, Iran: provenance, source weathering and tectonic setting. Mar Petrol Geol 121:104584

  • Maslov AV, Gareev EZ, Podkovyrov VN (2010) Upper Riphean and Vendian sandstones of the Bashkirian anticlinorium. Lithol Miner Resour 45:285–301

    Article  Google Scholar 

  • McLennan SM (1989) Rare Earth Elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    Google Scholar 

  • McLennan SM (1993) Weathering and global denudation. J Geol 101:295–303

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • McLennan SM, Taylor SR, Eriksson KA (1983a) Geochemistry of Archean shales from the Pilbara Supergroup. Western Australia Geochim Cosmochim Acta 47:1211–1222

    Article  Google Scholar 

  • McLennan SM, Taylor SR, Kroner A (1983b) Geochemical evolution of Archean shales from South Africa: I. The Swaziland and Pongola Super groups. Precambrian Res 22:93–124

    Article  Google Scholar 

  • Mclennan SM, Hemming SR, Mcdaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Spec Pap Geol Soc Am 284:21–40

    Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:2000GC000109

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1996) Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 43:341–358

    Article  Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady-state weathering and pedogenesis of siliciclastics sands and muds. J Geol 105:173–191

    Article  Google Scholar 

  • North CP, Hole MJ, Jones DG (2005) Geochemical correlation in deltaic successions: A reality check. Geol Soc Am Bull 117:620–632

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and sandstone. Springer, New York, pp 1–618

  • Rimmer S, Thompson J, Goodnight S, Robl T (2004) Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales, geochemical and petrographic evidence. Palaeogeogr, Palaeoclimatol, Palaeoecol 215:125–154

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Sallam ES, Wanas HA (2019) Petrography and geochemistry of the Jurassic siliciclastic rocks in the Khashm El-Galala area (NW Gulf of Suez, Egypt): implication for provenance, tectonic setting and source area paleoweathering. J Afr Earth Sci 160:103607

  • Santos JCBD, Le Pera E, Oliveira CSD, Souza Júnior VSD, Pedron FDA, Corrêa MM, Azevedo ACD (2019) Impact of weathering on REE distribution in soil-saprolite profiles developed on orthogneisses in Borborema Province, N Brazil. Geoderma 347:103–117

    Article  Google Scholar 

  • Suttner LJ, Dutta PK (1986) Alluvial sandstone composition and paleoclimate. I Framework Mineralogy J Sediment Petrol 56:329–345

    Google Scholar 

  • Suttner LJ, Basu A, Mack GH (1981) Climate and the origin of quartz arenites. J Sed Pet 51:235–246

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, pp 1–311

    Google Scholar 

  • Wani H, Mondal MEA (2010) Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozoic sedimentary rocks of the Bastar craton, Indian Peninsula: Implications on paleoweathering and Proterozoic crustal evolution. J Asian Earth Sci 38:220–232

    Article  Google Scholar 

  • Xu W, Li X, Wang Y, Zeng Q, Sun Y, Nima C (2011) Provenance analysis of the upper triassic flysch in Renbu Area. Southern Tibet Geol J China Univ 17:220–230 (in Chinese with English abstract)

    Google Scholar 

  • Yan DT, Chen DZ, Wang QC, Wang JG (2010) Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China. Geology 38:599–602

    Article  Google Scholar 

  • Yang YY (2004) Influence of Qinling Orogenic movements in Indo-Chinese Epoch to sedimentary characteristics of Yanchang Formation in Ordos Basin. Coal Geol Explor 32:7–9 (in Chinese with English abstract)

    Google Scholar 

  • Yang H, Fu JH, Wei XS, Liu XS (2008) Sulige field in the Ordos Basin: geological setting, field discovery and tight gas reservoirs. Mar Petrol Geol 25:387–400

    Article  Google Scholar 

  • Zaid SM (2012) Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez. Egypt J Afr Earth Sci 66–67:56–71

    Article  Google Scholar 

  • Zaid SM (2015) Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting. J Afr Earth Sci 102:1–17

    Article  Google Scholar 

  • Zhang X (2005) Sedimentary facies evolution of Upper Palaeozoic formation in Ordos Basin. J Earth Sci Environ 27:26–29 (in Chinese with English abstract)

    Google Scholar 

  • Zou C, Zhu R, Chen Z, Ogg J, Wu S, Dong D, Qiu Z, Wang Y, Lin S, Cui J, Su L, Yang Z (2019) Organic-matter-rich shales of China. Earth-Sci Rev 189:51–78

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Li, J., Wang, L. et al. Provenance, tectonic setting and source-area paleoweathering of the Upper Paleozoic sandstones in the northwestern Ordos Basin, China: evidence from whole-rock geochemistry. Carbonates Evaporites 36, 64 (2021). https://doi.org/10.1007/s13146-021-00729-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00729-2

Keywords

Navigation