Skip to main content

Advertisement

Log in

Depositional environment and tectonic backdrop of meta-carbonates in the Eastern Himalayan ophiolites, India: insights from calcite microstructures, whole-rock elements and stable isotopes

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Tuting–Tidding Suture Zone (TTSZ) is the eastern extension of the Indus–Tsangpo Suture Zone (ITSZ) and is exposed in the Arunachal Himalaya, India. It comprises rocks of ophiolitic affinity associated with amphibolites, volcano-sedimentary units and meta-carbonates, occurring as a folded sequence of dismembered outcrops. The meta-carbonates are banded and massive in nature and appear devoid of any microfossils. We present whole-rock geochemistry and stable isotopes of these meta-carbonates to explain their depositional as well as post-depositional characteristics. REE patterns (ƩREE = 3.63–47.10), with almost flat to slight enrichment of HREE as compared to LREE [(La/Yb)SN = 0.60–1.37] are comparable with REE patterns of marine carbonates. The δ13CPDB and δ18OPDB values range between 0.33 and 4.29‰ and − 13.90 and − 6.50‰, respectively. Poor correlations between isotopic ratios of δ13CPDB and δ18OPDB, values of whole-rock elemental ratios (Mg/Ca, Fe/Sr, Mn/Sr, Ca/Sr), and extremely low Na/Ca indicate that these rocks were formed in a hypersaline environment with least effect of post-depositional diagenetic processes. Calcite microstructural studies of the TTSZ meta-carbonates suggest that they have undergone deformation up to mylonitic stage, which generally occurs at temperatures above 400 °C. This deformation can be correlated with the metamorphism and deformation event of the ophiolite that occurred during accretion and exhumation of the sequence in the cold subduction zone. Thus, based on the microstructural, geochemical, and isotopic evidences, we propose that the TTSZ meta-carbonates were formed in a shallow marine environment during the late stage of an intra-oceanic subduction and were later deformed along with the rest of the ophiolitic rocks during accretion and exhumation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statements

All data generated or analysed during this study are included in this published article.

References

  • Acharyya SK (1987) Cenozoic plate motions creating the Eastern Himalaya and Indo-Burmese range around the northeast corner of India. Ghosh NC, Varadarajan S (eds) Ophiolites and Indian Plate Margins, pp 143–160. Patna University, Patna

  • Allan JR, Matthews RK (1977) Carbon and oxygen isotopes as diagenetic and stratigraphic tools: surface and subsurface data, Barbados. West Indies Geol 5(1):16–20

    Google Scholar 

  • Armstrong-Altrin JS, Verma SP, Madhavaraju J, Lee YI, Ramasamy S (2003) Geochemistry of upper Miocene Kudankulam limestones, southern India. Int Geol Rev 45(1):16–26

    Article  Google Scholar 

  • Armstrong-Altrin JS, Madhavaraju J, Sial AN, Kasper-Zubillaga JJ, Nagarajan R, Flores-Castro K, Rodríguez JL (2011) Petrography and stable isotope geochemistry of the cretaceous El Abra Limestones (Actopan), Mexico: implication on diagenesis. J Geol Soc India 77(4):349–359

    Article  Google Scholar 

  • Banner JL, Hanson GN, Meyers WJ (1988) Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian); implications for REE mobility during carbonate diagenesis. J Sediment Res 58(3):415–432

    Google Scholar 

  • Barber D (1985) Dislocations and microstructures. In: Wenk H-R (ed) Preferred orientation in deformed metals and rocks: an introduction to modern texture analysis. Elsevier

    Google Scholar 

  • Barbieri M, Masi U, Tolomeo L (1979) Stable isotope evidence for a marine origin of ophicalcites from the north-central Apennines (Italy). Mar Geol 30(3–4):193–204

    Article  Google Scholar 

  • Bau M (1993) Effects of syn-and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations. Eur J Mineral 5(2):257–267

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup. South Afr Precambrian Res 79(1–2):37–55

    Article  Google Scholar 

  • Bau M, Höhndorf A, Dulski P, Beukes NJ (1997) Sources of rare-earth elements and iron in Paleoproterozoic iron-formations from the Transvaal Supergroup, South Africa: evidence from neodymium isotopes. J Geol 105(1):121–129

    Article  Google Scholar 

  • Bau M, Romer RL, Lüders V, Beukes NJ (1999) Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): implications for the composition of Paleoproterozoic seawater and ‘dating’ the increase of oxygen in the Precambrian atmosphere. Earth Planet Sci Lett 174(1–2):43–57

    Article  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Eriksson KA (2005) Evidence for Paleoproterozoic cap carbonates in North America. Precambr Res 137(3–4):167–206

    Article  Google Scholar 

  • Bellanca A, Masetti D, Neri R (1997) Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): assessing REE sensitivity to environmental changes. Chem Geol 141(3–4):141–152

    Article  Google Scholar 

  • Bernoulli D, Weissert H (1985) Sedimentary fabrics in Alpine ophicalcites, south Pennine Arosa zone. Switzerland Geology 13(11):755–758

    Google Scholar 

  • Boulvais P, Fourcade S, Gruau G, Moine B, Cuney M (1998) Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U-Th mineralization (Tranomaro, Southeast Madagascar). Chem Geol 150(3–4):247–262

    Article  Google Scholar 

  • Bowman JR (1998) Stable-isotope systematics of skarn. In: Lentz DR (ed) Mineralized intrusion-related Skarn systems, mineralogical association of Canada, Calgary, Short Course, vol 26, pp 99–145

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In “Developments in geochemistry,” 2nd edn. Elsevier, pp 63–114

    Book  Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements. J Sediment Res 50(4):1219–1236

    Google Scholar 

  • Burdett JW, Grotzinger JP, Arthur MA (1990) Did major changes in the stable-isotope composition of Proterozoic seawater occur? Geology 18(3):227–230

    Article  Google Scholar 

  • Choudhuri BK, Gururajan NS, Bikramaditya Singh RK (2009) Geology and structural evolution of the Eastern Himalayan syntaxis. Himalayan Geol 30:17–34

    Google Scholar 

  • Clarke FW (1924) The composition of the river and lake waters of the United States. US Geological Survey, Professional Papers, No 135, p 199 IS Government Printing Office

  • Danielson A, Möller P, Dulski P (1992) The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem Geol 97(1–2):89–100

    Article  Google Scholar 

  • de Baar HJ, German CR, Elderfield H, Van Gaans P (1988) Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim Cosmochim Acta 52(5):1203–1219

    Article  Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 54:2965–2977

    Article  Google Scholar 

  • Derry LA, Kaufman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56(3):1317–1329

    Article  Google Scholar 

  • Dhoundial DP, Santra O, Dange MN (1976) A new look at the stratigraphy and tectonic importance of Tidding limestone and serpentinite of Lohit district. Geol Surv India Misc Public 24(2):368–378

    Google Scholar 

  • Dietrich V (1970) Die Stratigraphie der PliittaDecke: Fazielle Zusammenhänge zwischen Oberpenninikum und Unterostalpin. Geologisches Institut der Eidg. Technischen Hochschule Und Der Universität Zürich 63:631–671

    Google Scholar 

  • Douville E, Bienvenu P, Charlou JL, Donval JP, Fouquet Y, Appriou P, Gamo T (1999) Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta 63(5):627–643

    Article  Google Scholar 

  • Dutt A, Singh AK, Srivastava RK, Oinam G, Bikramaditya RK (2021a) Geochemical and metamorphic record of the amphibolites from the Tuting-Tidding Suture Zone ophiolites, Eastern Himalaya, India: Implications for the presence of a dismembered metamorphic sole. Geol Mag 158(5):787–810

    Article  Google Scholar 

  • Dutt A, Singh AK, Srivastava RK, Oinam G (2021b) Evidence of melt- and fluid-rock interactions in the refractory forearc peridotites and associated mafic intrusives from the Tuting-Tidding ophiolites, eastern Himalaya, India: Petrogenetic and tectonic implications. Geol J 56(4):2082–2110

    Article  Google Scholar 

  • Elderfield H, Pagett R (1986) Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment. Sci Total Environ 49:175–197

    Article  Google Scholar 

  • Ephraim BE (2012) Investigation of the geochemical signatures and conditions of formation of metacarbonate rocks occurring within the Mamfe embayment of south-eastern Nigeria. Earth Sci Res J 16(2):121–138

    Google Scholar 

  • Ferrill DA, Morris AP, Evans MA, Burkhard M, Groshong RH Jr, Onasch CM (2004) Calcite twin morphology: a low-temperature deformation geothermometer. J Struct Geol 26(8):1521–1529

    Article  Google Scholar 

  • Folk RL, McBride EF (1976) Possible pedogenic origin of Ligurian ophicalcite: a Mesozoic calichified serpentinite. Geology 4(6):327–332

    Article  Google Scholar 

  • Folk RL, McBride EF (1978) Radiolarites and their relation to subjacent" oceanic crust" in Liguria, Italy. J Sediment Res 48(4):1069–1102

    Article  Google Scholar 

  • Friedman I, O’Niel JR, (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleisher, M. (Ed.), Data of Geochemistry, 6th ed. U.S. Geological Survey Professional Paper 440:1–12

  • Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258(3–4):338–353

    Article  Google Scholar 

  • Früh-Green GL, Weissert H, Bernoulli D (1990) A multiple fluid history recorded in Alpine ophiolites. J Geol Soc 147(6):959–970

    Article  Google Scholar 

  • Gärtner C, Broecker M, Strauss H, Farber K (2011) Strontium-, carbon- and oxygen-isotope compositions of marbles from the Cycladic blueschist belt. Greece Geol Magazine 148(4):511–528

    Article  Google Scholar 

  • German CR, Elderfield H (1989) Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim Cosmochim Acta 53(10):2561–2571

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleo-redox indicator: the ground rules. Paleoceanography 5(5):823–833

    Article  Google Scholar 

  • German CR, Hergt J, Palmer MR, Edmond JM (1999) Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21 N East Pacific Rise. Chem Geol 155(1–2):65–75

    Article  Google Scholar 

  • Gianelli G (1977) Vara Supergroup ophiolite probably represents an ancient transcurrent fault zone. Ofioliti 2:115–135

    Google Scholar 

  • Guan P, Wang Y (2009) A review on the global Palaeoproterozoic positive d13C excursion: data analysis and matter comment. Acta Scientiarum Naturalium Univ Pekinensis 45:906–914 (in Chinese with English abstract)

    Google Scholar 

  • Gururajan NS, Choudhuri BK (2003) Geology and tectonic history of the Lohit valley, Eastern Arunachal Pradesh, India. J Asian Earth Sci 21(7):731–741

    Article  Google Scholar 

  • Hall SM, Veizer J (1996) Geochemistry of Precambrian carbonates: VII. Belt Supergroup, Montana and Idaho, USA. Geochim Cosmochim Acta 60(4):667–677

    Article  Google Scholar 

  • Huang M, Buick I (2002) High δ13C carbonates from the Songpan-Garze orogenic belt: implications for correlation of Neoproterozoic carbon isotope anomalies across the Yangtze Platform. China Gondwana Research 5(1):217–226

    Article  Google Scholar 

  • Hudson JD (1977) Stable isotopes and limestone lithification. J Geol Soc 133(6):637–660

    Article  Google Scholar 

  • Johnson CA, Taylor CD, Leventhal JS, Freitag K (2010) Geochemistry of metasedimentary rocks in the hanging wall of the greens creek massive sulfide deposit and of shales elsewhere on Admiralty Island. In: Taylor CD, Johnson CA (eds) Geology, geochemistry, and genesis of the Greens Creek Massive Sulfide Deposit, Admiralty Island, Southeastern Alaska. US Geological Survey Professional Paper, vol 1763. US Geological Survey, Washington, pp 159–182

    Google Scholar 

  • Kato Y, Nakao K, Isozaki Y (2002) Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: implications for an oceanic redox change. Chem Geol 182(1):15–34

    Article  Google Scholar 

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambr Res 73(1–4):27–49

    Article  Google Scholar 

  • Keith ML, Weber JN (1964) Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimt Cosmochim Acta 88:1787–1816

    Article  Google Scholar 

  • Kemp RA, Trueman CN (2003) Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeo-environment. Sed Geol 155(1–2):109–127

    Article  Google Scholar 

  • Khogenkumar S, Singh AK, Kumar S, Lakhan N, Chaubey M, Imtisunep S, Dutt A, Oinam G (2021) Subduction versus non-subduction origin of Nagaland-Manipur ophiolites along Indo-Myanmar orogenic belt, northeast India: fact and fallacy. Geol J 56(4):1773–1794

    Article  Google Scholar 

  • Klinkhammer GP, Elderfield H, Edmond JM, Mitra A (1994) Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochim Cosmochim Acta 58(23):5105–5113

    Article  Google Scholar 

  • Knipe RJ (1989) Deformation mechanisms—recognition from natural tectonites. J Struct Geol 11(1–2):127–146

    Article  Google Scholar 

  • Land LS (1970) Phreatic versus vadose meteoric diagenesis of limestones: evidence from a fossil water table. Sedimentology 14(3–4):175–185

    Article  Google Scholar 

  • Land LS, Hoops GK (1973) Sodium in carbonate sediments and rocks; a possible index to the salinity of diagenetic solutions. J Sediment Res 43(3):614–617

    Google Scholar 

  • Lavoie D, Cousineau PA (1995) Ordovician ophicalcites of southern Quebec Appalachians; a proposed early seafloor tectonosedimentary and hydrothermal origin. J Sediment Res 65(2a):337–347

    Google Scholar 

  • Leeder MR (1982) Sedimentology: process and product. George Allen & Unwin, Lon-don Boston Sydney, p 344

    Book  Google Scholar 

  • Lemoine M (1980) Serpentinites, gabbros and ophicalcites in the Piemont-Ligurian domain of the Western Alps: Possible indicators of oceanic fracture zones and of associated serpentinite protrusions in the Jurassic-Cretaceous Tethys. Arch Dies Sci Genève 33:103–115

    Google Scholar 

  • Lucas-Tooth HJ, Pyne C (1964) The accurate determination of major constituents by X-ray fluorescence analysis in the presence of large interelement effect. Adv X-Ray Anal 7:523–541

    Google Scholar 

  • Mackenzie FT, Garrels RM (1971) Evolution of sedimentary rocks. WW Norton and Company Inc, New York

    Google Scholar 

  • Madhavaraju J, González-León CM, Lee YI, Armstrong-Altrin JS, Reyes-Campero LM (2010) Geochemistry of the mural formation (Aptian-Albian) of the Bisbee group, Northern Sonora. Mexico Cretaceous Res 31(4):400–414

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    Google Scholar 

  • Melezhik V, Fallick AE, Pokrovsky BG (2005) Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle. Precambr Res 137(3–4):131–165

    Article  Google Scholar 

  • Mitchell AHG (1981) Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet. J Geol Soc 138(2):109–122

    Article  Google Scholar 

  • Mohanty SP, Barik A, Sarangi S, Sarkar A (2015) Carbon and oxygen isotope systematics of a Paleoproterozoic cap-carbonate sequence from the Sausar Group, Central India. Palaeogeogr Palaeoclimatol Palaeoecol 417:195–209

    Article  Google Scholar 

  • Murray RW, Ten Brink MRB, Gerlach DC, Russ GP III, Jones DL (1991) Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: assessing REE sources to fine-grained marine sediments. Geochim Cosmochim Acta 55(7):1875–1895

    Article  Google Scholar 

  • Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad formation, Bhima basin, Karnataka, southern India. Geosci J 15(1):9–25

    Article  Google Scholar 

  • Nandy DR (1973) Geology and structural lineaments of the Lohit Himalaya (Arunachal Pradesh) and adjoining area. Seminar Geodyn Himal Reg 167:172 (NGRI, Hyderabad)

    Google Scholar 

  • Narbonne GM, Kaufman AJ, Knoll AH (1994) Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geol Soc Am Bull 106:1281–1292

    Article  Google Scholar 

  • Nath BN, Balaram V, Sudhakar M, Plüger WL (1992) Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Mar Chem 38(3–4):185–208

    Article  Google Scholar 

  • Nelson CS, Smith AM (1996) Stable oxygen and carbon isotope fields for skeletal and diagenetic components in New Zealand Cenozoic non tropical carbonate sediments and limestones: a synthesis and review. N Z J Geol Geophys 39:93–107

    Article  Google Scholar 

  • Onimisi M, Obaje NG, Daniel A (2013) Geochemical and petrogenetic characteristics of the marble deposit in Itobe area, Kogi state, Central Nigeria. Adv Appl Sci Res 4(5):44–57

    Google Scholar 

  • Palmer MR (1985) Rare earth elements in foraminifera tests. Earth Planet Sci Lett 73(2–4):285–298

    Article  Google Scholar 

  • Pandit MK, Sial AN, Jamrani SS, Ferreira VP (2001) Carbon isotopic profile across the Bilara group rocks of trans-Aravalli Marwar Supergroup in western India: implications for Neoproterozoic—Cambrian transition. Gondwana Res 4(3):387–394

    Article  Google Scholar 

  • Pandit MK, Sharma KK, Sial AN, Ferreira VP (2009) C- and O-isotopic characteristics of Neoproterozoic Sirohi Group meta-carbonates in NW India and their palaeoclimatic implications. Curr Sci 97:246–251

    Google Scholar 

  • Peters T (1963) Mineralogie und Pétrographie des Totalpserpentins bei Davos. Dissertationsdruckerei Leemann Ag 43:529–686

    Google Scholar 

  • Poirier JP (1985) Creep of crystals: high-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press

    Book  Google Scholar 

  • Rankama K (1963) Progress in isotope geology. Interscience Publishers

    Google Scholar 

  • Rumble D III, Wang Q, Zhang R (2000) Stable isotope geochemistry of marbles from the coesite UHP terrains of Dabieshan and Sulu. China Lithos 52(1–4):79–95

    Article  Google Scholar 

  • Santos RV, dos Santos EJ, de Souza Neto JA, Carmona LCM, Sial AN, Mancini LH, de Lira Santos LCM, do NascimentoMendes GHLUS, Anastácio EMF (2013) Isotope geochemistry of Paleoproterozoic metacarbonates from Itatuba, Borborema Province, Northeastern Brazil: Evidence of marble melting within a collisional suture. Gondwana Res 23(1):380–389

    Article  Google Scholar 

  • Sarma KP, Nandy S, Mazumdar N (2012) Structural studies of the Mishmi block in parts of Dibang Valley of Arunachal Himalaya, Northeast India. Int J Geol Earth Environ Sci 2(3):43–56

    Google Scholar 

  • Sass E, Katz A (1982) The origin of platform dolomites; new evidence. Am J Sci 282(8):1184–1213

    Article  Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High temperature flow and dynamic recrystallization in Carrara marble. Tectonophysics 65(3–4):245–280

    Article  Google Scholar 

  • Singh AK (2013) Petrology and geochemistry of Abyssal Peridotites from the Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt, Northeast India: Implication for melt generation in mid-oceanic ridge environment. J Asian Earth Sci 66:258–276

    Article  Google Scholar 

  • Singh S, Choudhury PK (1990) A note on the drainage and lineaments of the Siang region, Arunachal Himalaya. J Assam Sci Soc 31:59–63

    Google Scholar 

  • Singh AK, Singh RB (2011) Zn-and Mn-rich chrome-spinels in serpentinite of Tidding Suture Zone, Eastern Himalaya and their metamorphism and genetic significance. Curr Sci 100:743–749

  • Singh AK, Singh RB (2013) Genetic implications of Zn-and Mn-rich Cr-spinels in serpentinites of the Tidding Suture Zone, eastern Himalaya. NE India Geological Journal 48(1):22–38

    Article  Google Scholar 

  • Singh AK, Tewari VC, Sial AN, Khanna PP, Singh NI (2016) Rare earth elements and stable isotope geochemistry of carbonates from the mélange zone of Manipur ophiolitic Complex, Indo-Myanmar Orogenic Belt. Northeast India Carbonates Evaporites 31(2):139–151

    Article  Google Scholar 

  • Singh AK, Chung SL, Bikramaditya RK, Lee HY (2017) New U-Pb zircon ages of plagiogranites from the Nagaland-Manipur Ophiolites, Indo-Myanmar Orogenic Belt, NE India. J Geol Soc Lond 174:170–179

    Article  Google Scholar 

  • Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contrib Miner Petrol 42(4):287–304

    Article  Google Scholar 

  • Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62(5):1233–1304

    Article  Google Scholar 

  • Tanaka K, Kawabe I (2006) REE abundances in ancient seawater inferred from marine limestone and experimental REE partition coefficients between calcite and aqueous solution. Geochem J 40(5):425–435

    Article  Google Scholar 

  • Tang J, Zheng YF, Wu YB, Gong B (2006) Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogen: implication for tectonic affinity. Precambr Res 144(1–2):1–18

    Article  Google Scholar 

  • Tang L, Santosh M, Tsunogae T, Maruoka T (2016) Paleoproterozoic meta-carbonates from the central segment of the Trans-North China Orogen: Zircon U-Pb geochronology, geochemistry, and carbon and oxygen isotopes. Precambr Res 284:14–29

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1981) The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philos Trans R Soc Lond 301(1461):381–399

    Article  Google Scholar 

  • Thakur VC, Jain AK (1975) Some observations on deformation, metamorphism and tectonic significance of the rocks of some parts of the Mishmi Hills, Lohit District (NEFA) Arunachal Pradesh. Himalayan Geol 5:339–364

    Google Scholar 

  • Toyoda K, Nakamura Y, Masuda A (1990) Rare earth elements of Pacific pelagic sediments. Geochim Cosmochim Acta 54(4):1093–1103

    Article  Google Scholar 

  • Trommsdorff V, Evans B, Pfeifer HR (1980) Ophicarbonate rocks: metamorphic reactions and possible origin. Archives Des Sci Genève 33:361–364

    Google Scholar 

  • Urai JL, Means WD, Lister GS (1986) Dynamic recrystallization of minerals. In “Mineral and rock deformation: laboratory studies,” vol 36. American Geophyscial Union, Washington, pp 161–199

    Book  Google Scholar 

  • van der Pluijm BA (1991) Marble mylonites in the Bancroft shear zone, Ontario, Canada: microstructures and deformation mechanisms. J Struct Geol 13(10):1125–1135

    Article  Google Scholar 

  • Vďačný M, Ruzicka P, Vozarova A (2016) Geochemistry and C, O, and Sr isotope composition of the Föderata Group metacarbonates (southern Veporicum, Western Carpathians, Slovakia): constraints on the nature of protolith and its depositional environment. Turk J Earth Sci 25(6):513–537

    Article  Google Scholar 

  • Veizer J (1983) Chemical diagenesis of carbonates: theory and application. Stable Isotopes Sediment Geol 10:3–100

    Google Scholar 

  • Veizer J, Hoefs J, Lowe DR, Thurston PC (1989) Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Geochim Cosmochim Acta 53(4):859–871

    Article  Google Scholar 

  • Veizer J, Plumb KA, Clayton RN, Hinton RW, Grotzinger JP (1992) Geochemistry of Precambrian carbonates: V. late Paleoproterozoic seawater. Geochim Cosmochim Acta 56(6):2487–2501

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GA, Diener A, Ebneth S, Godderis Y, Jasper T (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161(1–3):59–88

    Article  Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565

    Article  Google Scholar 

  • Zhao YY, Zheng YF, Chen F (2009) Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem Geol 265(3–4):345–362

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Director, WIHG, Dehradun, Head of Department, Banaras Hindu University (BHU), Varanasi as well as OIC of the ICP-MS, XRF and stable isotope laboratory facilities at WIHG, Dehradun. We thank Dr. R.K. Bikramaditya Singh, BHU for his support during the fieldwork. The first author Amrita Dutt would like to thank the Council for Scientific and Industrial Research (CSIR), New Delhi for financially supporting this work. We also the thank the anonymous reviewer for the constructive comments and suggestions which helped in significantly improving the manuscript. This study covers part of the first author’s doctoral thesis at WIHG and BHU on the north-eastern Himalaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krishnakanta Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutt, A., Singh, A.K., Oinam, G. et al. Depositional environment and tectonic backdrop of meta-carbonates in the Eastern Himalayan ophiolites, India: insights from calcite microstructures, whole-rock elements and stable isotopes. Carbonates Evaporites 36, 34 (2021). https://doi.org/10.1007/s13146-021-00704-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00704-x

Keywords

Navigation