Skip to main content
Log in

First record of the Middle Darriwilian δ13C excursion (MDICE) in southern Xizang (Tibet), China, and its implications

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The Ordovician Chiatsun Group, exposed at the Jiacun section, Nyalam, in southern Xizang (Tibet), China, is biostratigraphically one of the best constrained Ordovician sections in the Himalaya margin, and thus plays a key role in correlating the Ordovician strata of this region. The Chiatsun Group is subdivided into the Adang Formation, the Alai Formation, and the Jiaqu Formation, in stratigraphically ascending order. Based on limestone samples collected from the Alai and Jiaqu formations, the Darriwilian chemostratigraphy is established and confirmed by conodont biozonation data. The Middle Darriwilian δ13C excursion (MDICE) is recorded in the Himalaya margin for the first time, with an amplitude of about 2‰. Its rising limb starts near the boundary of the Histiodella holodentata and Histiodella kristinae zones, and the excursion reaches its maximum values in the Pygodus serra Zone. The decreasing limb is not exposed. The carbon isotope curve with its pronounced onset of the MDICE documents a high potential for chemostratigraphic correlations helping to disentangle the Kurgiakh orogeny in the Himalaya margin. The MDICE recorded in southern Xizang correlates well with that in Baltoscandia, Laurentia, the Argentine Precordillera, Siberia, South China, North China, and Tarim, and extends the distribution of the MDICE to a new block, and thereby strengthens its global significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsaar L, Meidla T, Martma T (1999) Evidence for a widespread carbon isotopic event associated with late Middle Ordovician sedimentological and faunal changes in Estonia. Geol Mag 136:49–62

    Google Scholar 

  • Ainsaar L, Meidla T, Tinn O (2004) Middle and Upper Ordovician stable isotope stratigraphy across the facies belts in the East Baltic. In: WOGOGOB-2004 conference materials, Tartu University Press, Tartu, pp 11–12

  • Ainsaar L, Kaljo D, Martma T, Meidla T, Männik P, Nõlvak J, Tinn O (2010) Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeogr Palaeoclimatol Palaeoecol 294:189–201

    Google Scholar 

  • Ainsaar L, Männik P, Dronov AV, Izokh OP, Meidla T, Tinn O (2015) Carbon isotope chemostratigraphy and conodonts of the Middle–Upper Ordovician succession in the Tungus Basin, Siberian Craton. Palaeoworld 24:123–135

    Google Scholar 

  • Albanesi GL, Bergström SM, Schmitz B, Serra F, Feltes NA, Voldman GG, Ortega G (2013) Darriwilian (Middle Ordovician) δ13Ccarb chemostratigraphy in the Precordillera of Argentina: documentation of the middle Darriwilian Isotope Carbon Excursion (MDICE) and its use for intercontinental correlation. Palaeogeogr Palaeoclimatol Palaeoecol 389:48–63

    Google Scholar 

  • Azmy K, Stouge S, Christiansen JL, Harper DAT, Knight I, Boyce D (2010) Carbon-isotope stratigraphy of the Lower Ordovician succession in Northeast Greenland: implications for correlations with St. George Group in western Newfoundland (Canada) and beyond. Sediment Geol 225:67–81

    Google Scholar 

  • Bauert H, Ainsaar L, Põldsaar K, Sepp S (2014) δ13C chemostratigraphy of the Middle and Upper Ordovician succession in the Tartu-453 drillcore, southern Estonia, and the significance of the HICE. Est J Earth Sci 63:195–200

    Google Scholar 

  • Bergström SM, Chen X, Gutiérrez-Marco JC, Dronov A (2009) The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42:97–107

    Google Scholar 

  • Bhargava ON, Frank W, Bertle R (2011) Late Cambrian deformation in the Lesser Himalaya. J Asian Earth Sci 40:201–212

    Google Scholar 

  • Buggisch W, Keller M, Lehnert O (2003) Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeogr Palaeoclimatol Palaeoecol 195:357–373

    Google Scholar 

  • Calner M, Lehnert O, Wu RC, Dahlqvist P, Joachimski MM (2014) δ13C chemostratigraphy in the Lower-Middle Ordovician succession of Öland (Sweden) and the global significance of the MDICE. GFF 136:48–54

    Google Scholar 

  • Chen TE (1984) The Ordovician cephalopod fauna and the subdivision of Ordovician from southern Xizang (Tibet). Acta Palaeontol Sin 23:452–471 (in Chinese with English abstract)

    Google Scholar 

  • Donovan SK, Harper DAT, Zhan RB, Stemmerik L, Liu JB, Stouge S (2012) A primitive cladid crinoid from the Jiacun Group, Tibet (Darriwilian, Middle Ordovician). Geol J 47:653–660

    Google Scholar 

  • Edwards CT, Saltzman MR (2014) Carbon isotope (δ13Ccarb) stratigraphy of the Lower-Middle Ordovician (Tremadocian–Darriwilian) in the Great Basin, western United States: implications for global correlation. Palaeogeogr Palaeoclimatol Palaeoecol 399:1–20

    Google Scholar 

  • Edwards CT, Saltzman MR (2016) Paired carbon isotopic analysis of Ordovician bulk carbonate (δ13Ccarb) and organic matter (δ13Corg) spanning the Great Ordovician Biodiversification Event. Palaeogeogr Palaeoclimatol Palaeoecol 458:102–117

    Google Scholar 

  • Gansser A (ed) (1964) Geology of the Himalayas. Interscience Publishers, London, p 289

    Google Scholar 

  • Garzanti E, Frette M (1991) Stratigraphic succession of the Thakkhola region (Central Nepal)—comparison with the northwestern Tethys Himalaya. Riv Ital Paleontol S 97:485–510

    Google Scholar 

  • Garzanti E, Casnedi R, Jadoul F (1986) Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya. Sediment Geol 48:237–265

    Google Scholar 

  • Guo YR, Zhao ZY, Xu WY, Shi XY, Gao JR, Bao HP, Liu JB, Zhang YL, Zhang YQ (2014) Sequence stratigraphy of the Ordovician System in the Ordos Basin. Acta Sediment Sin 32:44–60 (in Chinese with English abstract)

    Google Scholar 

  • Harper DAT, Zhan RB, Stemmerik L, Liu JB, Donovan SK, Stouge S (2011) Ordovician on the roof of the world: macro-and microfaunas from tropical carbonates in Tibet. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the world. Cuardernos del Museo Geominero 14, Madrid, pp 215–220

    Google Scholar 

  • Harris AG, Repetski JE, Kauffman EG (1987) Chapter F: some Ordovician and Permian-Triassic conodonts from Xizang (Tibet). In: Sando WJ (ed) Shorter contributions to paleontology and stratigraphy, vol 1690. US Geol. Surv. Bull., pp 1–6

    Google Scholar 

  • Hughes NC, Myrow PM, McKenzie NR, Harper DAT, Bhargava ON, Tangri SK, Ghalley KS, Fanning CM (2011) Cambrian rocks and fauna of the Wachi La, Black Mountains, Bhutan. Geol Mag 148:351–379

    Google Scholar 

  • Kaljo D, Martma T, Saadre T (2007) Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeogr Palaeoclimatol Palaeoecol 245:138–155

    Google Scholar 

  • Kaufman AJ, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res 73:27–49

    Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range: present knowledge of continental arc. Am J Sci A275:1–44

    Google Scholar 

  • Lehnert O, Meinhold G, Wu RC, Calner M, Joachimski MM (2014) 13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden. Est J Earth Sci 6:277–286

    Google Scholar 

  • Leslie SA, Saltzman M, Bergström SM, Repetski JE, Howard A, Seward AM (2011) Conodont biostratigraphy and stable isotope stratigraphy across the Ordovician Knox/Beekmantown unconformity in the central Appalachians. In: Gutiérrez-Marco JC, Rábano I, García-Bellido D (eds) Ordovician of the world. Cuardernos del Museo Geominero 14, Madrid, pp 301–308

    Google Scholar 

  • Lin BY, Qiu HR (1982) New knowledge of the Palaeozoic stratigraphy in Himalaya districts of Xizang (Tibet). Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau. Geological Publishing House, Beijing, pp 149–152 (in Chinese with English abstract)

    Google Scholar 

  • Liu CG, Li GR, Wang DW, Liu YL, Luo MX, Shao XM (2016) Middle–Upper Ordovician (Darriwilian–Early Katian) positive carbon isotope excursions in the northern Tarim Basin, northwest China: implications for stratigraphic correlation and paleoclimate. J Earth Sci 27:317–328

    Google Scholar 

  • Ludvigson GA, Jacobson SR, Witzke BJ, González LA (1996) Carbonate component chemostratigraphy and depositional history of the Ordovician Decorah Formation, Upper Mississippi Valley. Geol Soc Am Spe Pap 306:67–86

    Google Scholar 

  • Ludvigson GA, Witzke BJ, Schneider CL, Smith EA, Emerson NR, Carpenter SJ, González LA (2004) Late Ordovician (Turonian–Chatfieldian) carbon isotope excursions and their stratigraphic and paleoceanographic significance. Palaeogeogr Palaeoclimatol Palaeoecol 210:187–214

    Google Scholar 

  • Ma X, Wang ZH, Zhang YD, Song YY, Fang X (2015) Carbon isotope records of the Middle–Upper Ordovician transition in Yichang Area, South China. Palaeoworld 24:136–148

    Google Scholar 

  • Männik P, Viira V (2005) Distribution of Ordovician conodonts. In: Põldvere A (ed) Mehikoorma (421) drill-core. Estonian geological sections, Estonian Geological Survey Bulletin, 6, pp 16–20

  • Martma T (2005) Ordovician carbon isotopes. In: Põldvere A (ed) Mehikoorma (421) drill core. Estonian geological sections, vol 6. Est. Geol. Surv. Bull., pp 25–27

    Google Scholar 

  • Meidla T, Ainsaar L, Backman J, Dronov A, Holmer L, Sturesson U (2004) Middle–Upper Ordovician carbon isotopic record from Västergötland (Sweden) and East Baltic. In: WOGOGOB-2004 conference materials, Tartu University Press, Tartu, pp 67–68

  • Mu EZ, Yin JX, Wen SX, Wang YG, Zhang BG (1973) Stratigraphy of the Mount Jolmo Lungma region in southern Tibet, China. Sci Geol Sin 1:1–36 (in Chinese)

    Google Scholar 

  • Munnecke A, Zhang Y, Liu X, Cheng J (2011) Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeogr Palaeoclimatol Palaeoecol 307:17–43

    Google Scholar 

  • Myrow PM, Hughes NC, Paulsen TS, Williams IS, Parcha SK, Thompson KR, Bowring SA, Peng SC, Ahluwalia AD (2003) Integrated tectonostratigraphic reconstruction of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–441

    Google Scholar 

  • Myrow PM, Snell KE, Hughes NC, Paulsen TS, Heim NA, Parcha SK (2006a) Cambrian depositional history of the Zanskar Valley region of Indian Himalaya. Tectonic implications. J Sediment Res 76:364–381

    Google Scholar 

  • Myrow PM, Thompson KR, Hughes NC, Paulsen TS, Sell BK, Parcha SK (2006b) Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India. Geol Soc Am Bull 118:491–510

    Google Scholar 

  • Myrow PM, Hughes NC, Searle MP, Fanning CM, Peng SC, Parcha SK (2009) Stratigraphic correlation of Cambrian–Ordovician deposits along the Himalaya: implications for the age and nature of rocks in the Mt. Everest Region. Geol Soc Am Bull 121:323–332

    Google Scholar 

  • Myrow PM, Hughes NC, Goodge JW, Fanning CM, Williams IS, Peng SC, Bhargava ON, Parcha SK, Pogue KR (2010) Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geol Soc Am Bull 122:1660–1670

    Google Scholar 

  • Myrow PM, Hughes NC, McKenzie NR, Pelgay P, Thomson TJ, Haddad EE, Fanning CM (2016) Cambrian–Ordovician orogenesis in Himalayan equatorial Gondwana. Geol Soc Am Bull 128:1679–1695

    Google Scholar 

  • Myrow PM, Hughes NC, McKenzie NR (2019) Reconstructing the Himalayan margin prior to collision with Asia: Proterozoic and lower Paleozoic geology and its implications for Cenozoic tectonics. Geological Society London Special Publications 483(1):39–64. https://doi.org/10.1144/SP483.10

    Article  Google Scholar 

  • Qiu HR (1988) Early Palaeozoic conodont biostratigraphy of Xizang (Tibet). Prof Pap Stratigr Palaeontol 19:185–208 (in Chinese with English abstract)

    Google Scholar 

  • Saltzman MR (2005) Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology 33:573–576

    Google Scholar 

  • Schmitz B, Bergström SM, Wang XF (2010) The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: implications of its first recorded occurrences outside Baltoscandia. J Geol Soc 167:249–259

    Google Scholar 

  • Srikantia SV (1981) The lithostratigraphy, sedimentation and structure of Proterozoic–Phanerozoic formations of Spiti basin in the higher Himalaya of Himachal Pradesh, India. In: Sinha AK, Nautiyal SP (eds) Contemporary Geoscientific Researches in India, (a Commemorative Volume in Honour of S. P. Nautiyal). Bishen Singh Mahendra Pal Singh, Dehra Dun, pp 31–48

    Google Scholar 

  • Srikantia SV, Ganesan TM, Rao PN, Sinha PN, Tirkey B (1980) Geology of Zanskar area, Ladakh Himalaya. Himal Geol 8:1009–1033

    Google Scholar 

  • Torsvik TH, Cocks LRM (2013) Chapter 2: new global palaeogeographical reconstructions for the Early Palaeozoic and their generation. In: Harper DAT, Servais T (eds) Early Palaeozoic biogeography and palaeogeography. J. Geol. Soc. London, pp 5–24

    Google Scholar 

  • Torsvik TH, Paulson TS, Hughes NC, Myrow PM, Ganerød M (2009) The Tethyan Himalaya: palaeogeographical and tectonic constraints from Ordovician palaeomagnetic data. J Geol Soc Lond 166:679–687

    Google Scholar 

  • Wang YG (1974) Ordovician and Silurian systems. In: Tibet Scientific Expedition Team of Chinese Academy of Sciences (ed) Reports on the Scientific Expedition in the Jolmo Lungma Region (1966–1968), Geology Volume. Science Press, Beijing, pp 24–47 (in Chinese)

  • Wang ZH, Bergström SM, Zhen YY, Chen X, Zhang YD (2013) On the integration of Ordovician conodont and graptolite biostratigraphy: new examples from Gansu and Inner Mongolia in China. Alcheringa 37:510–528

    Google Scholar 

  • Wen SX, Zhang BG, Wang YG, Sun DL, Dong DY, Yin JX, Wu HR, Chen CZ, Wang YJ, He GX, Mu XN, Geng GC, Liao WH, Chen TE, Guo SZ (1984) Stratigraphy of Xizang (Tibetan) Plateau. Science Press, Beijing, p 405 (in Chinese)

    Google Scholar 

  • Wu RC, Calner M, Lehnert O, Peterffy O, Joachimski MM (2015) Lower–Middle Ordovician δ13C chemostratigraphy of western Baltica (Jämtland, Sweden). Palaeoworld 24:110–122

    Google Scholar 

  • Wu RC, Calner M, Lehnert O (2017) Integrated conodont biostratigraphy and carbon isotope chemostratigraphy in the Lower-Middle Ordovician of southern Sweden reveals a complete record of the MDICE. Geol Mag 154:334–353

    Google Scholar 

  • Wu RC, Calner M, Lehnert O, Lindskog A, Joachimski MM (2018) Conodont biostratigraphy and carbon isotope stratigraphy of the Middle Ordovician (Darriwilian) Komstad Limestone, southern Sweden. GFF 140:44–54

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev 76:1–131

    Google Scholar 

  • Yin CH, Kuo ST (1978) Stratigraphy of the Mount Jolmo Lungma and its north slope. Sci Sin 21:629–644

    Google Scholar 

  • Young SA, Saltzman MR, Bergström SM (2005) Upper Ordovician (Mohawkian) carbon isotope (δ13C) stratigraphy in eastern and central North America: regional expression of a perturbation of the global carbon cycle. Palaeogeogr Palaeoclimatol Palaeoecol 222:53–76

    Google Scholar 

  • Young SA, Gill BC, Edwards CT, Saltzman MR, Leslie SA (2016) Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeogr Palaeoclimatol Palaeoecol 458:118–132

    Google Scholar 

  • Yu SY, Fang X, Munnecke A, Li WJ, Zhen YY, Li Y, Wang ZH, Zhang YD (2019) First documentation of Middle Ordovician warm-water carbonates in theMount Jolmo Lungma (Mount Everest) area, southern Xizang (Tibet), China, and its paleogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 530:136–151

    Google Scholar 

  • Zhan RB, Harper DAT, Jin JS, Liang Y, Liu JB, Stemmerik L, Stouge S (2014) Middle Ordovician Aporthophyla brachiopod fauna from the roof of the world, southern Tibet. Palaeontology 57:141–170

    Google Scholar 

  • Zhang P (1993) Ordovician system. In: Bureau of Geology and Mineral Resources of Xizang Autonomous Region (ed) Regional geology of Xizang (Tibet) autonomous region. Geological Publishing House, Beijing, pp 33–43 (in Chinese, English abstract)

  • Zhang YD, Munnecke A (2016) Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol 458:154–175

    Google Scholar 

  • Zhen YY, Zhang YD, Harper DAT, Zhan RB, Fang X, Wang ZH, Yu SY, Li WJ (2020) Ordovician successions in southern-central Xizang (Tibet), China—refining the stratigraphy of the Himalayan and Lhasa terranes. Gondwana Res 83:372–389

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant no. XDB26000000, XDB10010102, XDB10010104 and XDB10010503), the SAFEA program of CAS, and by grants from the National Natural Science Foundation of China (Grant no. 41772005 and 41290260). This is a contribution to IGCP 653 project (‘The Onset of Great Ordovician Biodiversification Event’) and the IGCP 668 project (‘Equatorial Gondwanan History and Early Paleozoic Evolutionary Dynamics’). Y. Y. Zhen publishes with the permission of the Executive Director, Geological Survey of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenyang Yu or Axel Munnecke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Fang, X., Zhang, Y. et al. First record of the Middle Darriwilian δ13C excursion (MDICE) in southern Xizang (Tibet), China, and its implications. Carbonates Evaporites 36, 33 (2021). https://doi.org/10.1007/s13146-021-00703-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-021-00703-y

Keywords

Navigation