Skip to main content

Advertisement

Log in

Hydrogeology and geomorphology of Bisetun Aquifer (NW Iran): interesting example of deep endokarst

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Bisetun Aquifer hosts of a noteworthy example of deep endokarst system in the world which is largely unknown to the scientific community. Several caves with up to 1316.6 m depth and the world's second deepest shaft were discovered in this aquifer during recent years. This research tries to give a scientific explanation from geology, hydrogeology, geomorphology, and hydrochemistry to the questions about formation of this endokarst system. The aquifer is composed of about 3000 m thick Bisetun Limestone with more than 80% carbonate minerals. Existing of massive pure limestone together with the local cold weather and high precipitation at the area enhance karst development, but it seems that formation of deep endokarst in the aquifer is mainly related to the tectonic features. The Bisetun Limestone has experienced about 50–70 km displacement during Eocene, providing suitable structural conditions and near 2000 m relief for deep water circulation. All the caves and shafts are epigenic since they were formed by autogenic water movement from the high-elevation recharge zone toward the springs in nearby valleys. Caves and shafts morphology together with the analysis of structural features indicates that passage development was directed along the W–E-oriented successive thrust faults, subsequently dissected by the NE–SW- and NW–SE-oriented traversing faults. Water chemistry and high recession coefficients of spring's hydrographs show fast groundwater movement via karst conduits, mainly developed along the faults and fractures. Considering hydrogeological setting, it seems possible that even deeper endokarst features would be waiting to be explored at the aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences 1;94(3):401–19.

  • Annable WK (2003) Numerical analysis of conduit evolution in karstic aquifers. University of Waterloo [Department of Earth Sciences].

  • Appelo CAJ, Postma D (2004) Geochemistry, groundwater and pollution. CRC press.

  • Bakalowicz M (1992) Géochimie des eaux et flux de matières dissoutes. L’approche objective du rôle du climat dans la karstogenese (Water geochemistry and dissolved solid flux. The objective approach of climate part in the genesis of karst). Karst evolutions climatiques. Hommage à Jean Nicod. Presses Universitaires de Bordeaux, Talence, pp.61–74.

  • Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Friedrich A, Tabatabaei SH (2011) Arabia-Eurasia continental collision: Insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Bulletin 123(1–2), pp.106–131.

  • Ballesteros D, Jiménez-Sánchez M, García-Sansegundo J, Giralt S (2011) Geological methods applied to speleogenetical research in vertical caves: the example of Torca Teyera shaft (Picos de Europa, northern Spain). Carbonates Evaporites 26(1):29–40

    Article  Google Scholar 

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3–4):193–224

    Article  Google Scholar 

  • Colliard D (2003) Nouveau record du monde au réseau Mirolda - Lucien Bouclier (Massif du Criou - Samoëns - Haute-Savoie) –1733 m., Spelunca, Paris, Fédération française de spéléologie, No 89, 2003, p. 5–6 (ISSN 0249–0544, lire en ligne [archive], consulté le 29 novembre 2017.

  • Cox SE (2003) Estimates of residence time and related variations in quality of ground water beneath submarine Base Bangor and vicinity, Kitsap County, Washington (No. 3). US Department of the Interior, US Geological Survey.

  • Delaloye M, Desmons J (1980) Ophiolites and mélange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics 68(1–2):83–111

    Article  Google Scholar 

  • De Waele J, Gutiérrez F, Parise M, Plan L (2011) Geomorphology and natural hazards in karst areas: a review. Geomorphology 134(1–2):1–8

    Article  Google Scholar 

  • De Waele J, Piccini L, Columbu A, Madonia G, Vattano M, Calligaris C, D’Angeli I, Parise M, Chiesi M, Sivelli M, Vigna B (2017) Evaporite karst in Italy: a review.

  • Duringer P, Bacon AM, Sayavongkhamdy T, Nguyen TKT (2012) Karst development, breccias history, and mammalian assemblages in Southeast Asia: A brief review. CR Palevol 11(2–3):133–157

    Article  Google Scholar 

  • Ekmekci M (2016) Review of Turkish karst with emphasis on tectonic and paleogeographic controls. Acta carsologica 32(2).

  • Falcon NL (1967) Major earth-flexing in the Zagros Mountains of southwest Iran: Quaternary Journal of Geological Society of London 117:367–376

    Google Scholar 

  • Faulkner T (2006) Tectonic inception in Caledonide marbles. Acta Carsologica 35(1).

  • Fergusson CL, Nutman AP, Mohajjel M, Bennett VC (2016) The Sanandaj-Sirjan Zone in the Neo-Tethyan suture, western Iran: Zircon U-Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis. Gondwana Res 40:43–57

    Article  Google Scholar 

  • Florea LJ (2006) Architecture of air-filled caves within the karst of the Brooksville Ridge, west-central Florida. Geography/Geology Faculty Publications, p.12.

  • Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. John Wiley & Sons.

  • Geological Survey of Iran (1999) Geological Quadrangle Map of Kermanshah, with explanatory text in Persian. Scale: 1:250,000, 1 sheet.

  • Ghobadi MH, Torabi-Kaveh M, Miri M, Mahdiabadi N (2015) An introduction to the karst geomorphology of the Bisetun Taqe Bostan historical region (northeast Kermanshah, Iran) with special emphasis on karst development as a serious threat for the UNESCO World Heritage Site. Bull Eng Geol Env 74(3):1071–1086

    Article  Google Scholar 

  • Gillieson D (2009) Caves: processes, development and management. John Wiley & Sons.

  • Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Article  Google Scholar 

  • Hashemian AH, Rezaei M, Kashefi H, Pirsaheb M, Kharajpour H (2017) Trend step changes of seasonal and annual precipitation over Kermanshah during a 60-year period using non-parametric methods. An International Peer Reviewed Open Access Journal for Rapid Publication p.662.

  • IAEA (International Atomic Energy Agency) (2013) Isotope methods for dating old groundwater.

  • Iran Meteorical Organization (2020)Retrieved from: https://www.irimo.ir

  • Iran Mountaineering and Sport Climbing Federation (2019) Retrieved from: https://msfi.ir

  • Judson D (1973) Ghar Parau, Hydrographical Expedition (Ghar Sarab) – Iran 1973 (Final Report), Napier College of Commerce and Technology – Edinburgh, 1973.

  • Kambesis P (2007) The importance of cave exploration to scientific research. Journal of cave and karst studies 69(1):46–58

    Google Scholar 

  • Kazmin V, Ricou LE, Sbortshikov IM (1986) Structure and evolution of the passive margin of the eastern Tethys. Tectonophysics 123(1–4):153–179

    Article  Google Scholar 

  • Kermanshah Regional Water Authority (2018) Groundwater analysis of Bisetun Springs [in Persian].

  • Klimchouk AB (2000) Speleogenesis of the great gypsum mazes in the Western Ukraine. Speleogenesis: Evolution of karst aquifers. Huntsville: Natl. Speleol. Soc pp.261–273.

  • Klimchouk AB, Samokhin GV, Kasian Y (2009) The deepest cave in the world in the Arabika massif (Western Caucasus) and its hydrogeological and paleogeographic significance. In ICS Proceedings, 15th International Congress of Speleology, Kerrville (Vol. 27, pp. 898–905).

  • Klimchouk AB (2019) Krubera (Voronja) Cave. In Encyclopedia of Caves (pp. 627–634). Academic Press.

  • LeGrand HE, Stringfield VT (1973) Karst hydrology—a review. J Hydrol 20(2):97–120

    Article  Google Scholar 

  • Li G, Goldscheider N, Field MS (2016) Modeling karst spring hydrograph recession based on head drop at sinkholes. J Hydrol 542:820–827

    Article  Google Scholar 

  • Madelaine E (2019) Retrieved from: https://www-sop.inria.fr/agos-sophia/sis/DB/database.html

  • Mitasova H, Mitas L, Harmon RS (2005) Simultaneous spline approximation and topographic analysis for lidar elevation data in open source GIS. IEEE Geosci Remote Sens Lett 2:375–379

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 21(4):397–412

    Article  Google Scholar 

  • Motiei H (1993) Stratigraphy of Zagros: Geological Survey of Iran, 583 pp.

  • Okay AI, Zattin M, Cavazza W (2010) Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38(1):35–38

    Article  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21

    Article  Google Scholar 

  • Qahroudi Tali M, Jalilian T, Alijani F (2014) Detection of Karstic Groundwater Flow System: A Case Study of Prao-Bisetoun Limestone Mass, Kermanshah Province, Iran. International Bulletin of Water Resources & Development V:2, No:4.

  • Saein AF (2018) Tectonic and Structural Framework of the Zagros Fold-thrust Belt. Elsevier.

  • Saura E, Garcia-Castellanos D, Casciello E, Parravano V, Urruela A, Vergés J (2015) Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq). Tectonics 34(3):377–395

    Article  Google Scholar 

  • Saymohammadi S, Zarafshani K, Tavakoli M, Mahdizadeh H, Amiri F (2017) Prediction of climate change induced temperature & precipitation: The case of Iran. Sustainability 9(1):146

    Article  Google Scholar 

  • Spitaleri TG, Vecchio U, Sorninia Y (2018) Ghala Cave (Ghar-e-Ghala): puits de 562 m. Magazine Spéléo 102.

  • Stevanović Z (2015) Karst environment and phenomena. In Karst Aquifers haracterization and Engineering (pp. 19–46). Springer, Cham.

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. International Journal of Speleology 37(1):1

    Article  Google Scholar 

  • White WB (2007) A brief history of karst hydrogeology: contributions of the NSS. Journal of Cave and Karst Studies 69(1):13–26

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the sincere cooperation of the Surena Caving Team from Iran, La Venta Association from Italy, MSFI, and Kermanshah Regional Water Authority for providing useful data. The authors need to express their appreciation of the great review made by Prof. Paul Williams from University of Auckland. The authors would like to express their sincere thanks and gratitude to Mr. Alessio Romeo, Mr. Ghasem Ghaderi and Mr. Mohammad Kiani for permission to use their photographs taken at the study area. The authors also would like to thank University of Tehran and Shahrood University for providing the facilities and the leave time to work on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Mozafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafari, M., Sajjadian, M., Sorninia, Y. et al. Hydrogeology and geomorphology of Bisetun Aquifer (NW Iran): interesting example of deep endokarst. Carbonates Evaporites 35, 115 (2020). https://doi.org/10.1007/s13146-020-00636-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00636-y

Keywords

Navigation