Skip to main content

Advertisement

Log in

Palaeoredox link with the late Neoproterozoic–early Cambrian Bilara carbonate deposition, Marwar Supergroup, India

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

This study performed a stable isotope and redox-sensitive trace-element investigation on the Gotan Limestone and Pondlo Dolomite of the Bilara Group, Marwar Supergroup to decipher the palaeodepositional redox condition. A multivariate-statistical analysis of geochemical data set (δ13C-carb, δ18O-carb, δ13C-org, TOC, V, Ni, Cu, Zn, Mo, Pb, and U) reveals that limestone and dolomite units of the Bilara Group were deposited under two different redox regimes. Dolomite has an average δ13C-org values ~ − 30.0 ‰ and shows a statistically significant negative correlation with δ13C-carb which indicates an oxygen-depleted closed palaeodepositional environment. Dolomite δ13C-carb also shows a statistically significant negative correlation with redox-sensitive trace elements V, Ce, Pb, and U which infer higher secondary productivity during the dolomite deposition. The limestone has an average δ13C-org values ~ − 28.9 ‰ and δ13C-carb shows a significant positive correlation with δ18O-carb and Sr, whereas δ13C-carb shows a significant negative correlation with V and U. These statistical relationships among the geochemical parameter are indicative of suboxic-to-oxic water column with a relatively higher depth that received a significant input of water discharge from the terrestrial region. This discharge may have brought nutrients and other weathering-derived ions into the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal S, Srivastava P, Sonam Meena NK, Rai SK, Bhushan R, Misra DK, Gupta AK (2015) Stable (δ13C and δ15N) isotopes and magnetic susceptibility record of late Holocene climate change from a lake profile of the northeast Himalaya. J Geol Soc India 86:696–705

    Google Scholar 

  • Agrawal S, Verma P, Rao MR, Garg R, Kapur VV, Bajpai S (2017) Lignite deposits of the Kutch Basin, western India: carbon isotopic and palynological signatures of the early Eocene hyperthermal event ETM2. J Asian Earth Sci 146:296–303

    Google Scholar 

  • Ahmad S, Kumar S (2014) Trace fossil assemblage from the Nagaur Group, western India. J Palaeontol Soc India 59(2):231–246

    Google Scholar 

  • Algeo TJ, Lyons TW (2006) Mo-TOC covariation in modern anoxic marine environments: implications for analysis of paleoredox and hydrographic conditions. Paleoceanography 21:1016. https://doi.org/10.1029/2004PA001112

    Article  Google Scholar 

  • Amthor JE, Grotzinger JP, Schröder S, Bowring SA, Ramezani J, Martin MW, Matter A (2003) Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31:431–434

    Google Scholar 

  • Ansari AH, Pandey SK, Sharma M, Agrawal S, Kumar Y (2018) Carbon and oxygen isotope stratigraphy of the Ediacaran Bilara Group, Marwar Supergroup, India: evidence for high amplitude carbon isotopic negative excursions. Precambrian Res 308:75–91

    Google Scholar 

  • Bolhar R, Kranendonk Martin JV (2007) A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res 155:229–250

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114(3–4):315–329

    Google Scholar 

  • Chang C, Hu W, Fu Q, Cao J, Wang X, Yao S (2016) Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui Province, South China: implications for stratigraphy and paleoenvironment reconstruction. J Asian Earth Sci 125:58–70

    Google Scholar 

  • Chauhan DS, Bhanwara R, Narayanan R (2004) Jodhpur sandstone: a gift of ancient beaches to Western Rajasthan. J Geol Soc India 64:265–276

    Google Scholar 

  • Chen Z, Bengtson S, Zhou CM, Hua H, Yue Z (2008) Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41:37–45

    Google Scholar 

  • Chester R (2000) Marine geochemistry, 2nd edn. Blackwell Science Ltd, Oxford, p 506

    Google Scholar 

  • Darroch SAF, Smith EF, Laflamme M, Erwin Douglas H (2018) Ediacaran extinction and cambrian explosion. Trends Ecol Evol 33(9):653–663

    Google Scholar 

  • Droser Mary L, Tarhan Lidya G, Gehling James G (2017) The rise of animals in a changing environment: global ecological innovation in the Late Ediacaran. Annu Rev Earth Planet Sci 45:593–617

    Google Scholar 

  • Evans SD, Diamond CW, Droser ML, Lyons TW (2018) Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerg Top Life Sci. https://doi.org/10.1042/ETLS20170148

    Article  Google Scholar 

  • Fan H, Wen H, Han T, Zhu X, Feng L, Chang H (2018) Oceanic redox condition during the late Ediacaran (551–541 Ma), South China. Geochim Cosmochim Acta 238:343–356

    Google Scholar 

  • Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran ocean. Nature 444:744–747

    Google Scholar 

  • George BG, Ray JS (2017) Provenance of sediments in the Marwar Supergroup, Rajasthan, India: implications for basin evolution and Neoproterozoic global events. J Asian Earth Sci 147:254–270

    Google Scholar 

  • Germs GJ (1972) New shelly fossils from the Nama Group, South-West Africa. Afr J Sci 272(8):752–761

    Google Scholar 

  • Gregory LC, Meert JG, Bingen BH, Pandit MK, Torsvik TH (2009) Paleomagnetic and geochronologic study of Malani Ingeous suite, NW India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Res 170:13–26

    Google Scholar 

  • Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359

    Google Scholar 

  • Hughes NC (2016) The Cambrian palaeontological record of the Indian subcontinent. Earth Sci Rev 159:428–461

    Google Scholar 

  • Ishikawa T, Ueno Y, Shu D, Li Y, Han J, Guo J, Yoshida N, Komiya T (2013) Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high-resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Res 225:190–208

    Google Scholar 

  • Jensen ES (1991) Evaluation of automated analysis of 15N and total N in plant material and soil. Plant Soil 133:83–92

    Google Scholar 

  • Jin C, Li C, Algeo TJ, Planavsky NJ, Cui H, Yang XL, Zhao YL, Zhang XL, Xie SC (2016) A highly redox-heterogeneous ocean in South China during the Early Cambrian (~ 529–514 Ma): implications for biota-environment co-evolution. Earth Planet Sci Lett 441:38–51

    Google Scholar 

  • Kumar S, Ahmad S (2016) Problematic structures from the Ediacaran Jodhpur Sandstone, Rajasthan, India, and their possible affinity. J Palaeontol Soc India 61(1):63–73

    Google Scholar 

  • Kumar S, Misra PK, Pandey SK (2009) Ediacaran megaplant fossils with Voucheriacean affinity from the Jodhpur Sandstone, Marwar Supergroup, western Rajasthan. Curr Sci 97(5):701–705

    Google Scholar 

  • Kumar S, Pandey SK (2008) Discovery of trilobite trace fossils from the Nagaur Sandstone, the Marwar Supergroup, Dulmera area, district Bikaner, Rajasthan. Curr Sci 94:1081–1085

    Google Scholar 

  • Kumar S, Pandey SK (2009) A note on the occurrence of Arumberia banksi from the Jodhpur Sandstone, Marwar Supergroup, Jodhpur area, Rajasthan. J Palaeontol Soc India 54(2):171–178

    Google Scholar 

  • Kumar S, Pandey SK (2010) Trace fossils from the Nagaur Sandstone, Marwar Supergroup, Dulmera area, Bikaner district, Rajasthan, India. J Asian Earth Sci 38:77–85

    Google Scholar 

  • Kumar V, Chandra R, Rastogi S (2005) Geology and evolution of Nagaur-Ganganagar basin with special reference to salt and potash mineralization. J Geol Surv India Sp Pub 62:1–151

    Google Scholar 

  • Li C, Planavsky NJ, Love GD, Reinhard CT, Hardisty D, Feng L, Bates SM, Huang J, Zhang Q, Chu X, Lyons TW (2015) Marine redox conditions in the middle Proterozoic ocean and isotopic constraints on authigenic carbonate formation: insights from the Chuanlinggou Formation, Yanshan Basin, North China. Geochim Cosmochim Ac 150:90–105

    Google Scholar 

  • Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL (2000) Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288:841–845

    Google Scholar 

  • McFadden KA, Huang J, Chu XL, Jiang GQ, Kaufman AJ, Zhou CM, Yuan X, Xiao S (2008) Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA 105:3197–3202

    Google Scholar 

  • McKenzie NR, Hughes NC, Myrow PM, Xiao S, Sharma M (2011) Correlation of Precambrian-Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones. Earth Planet Sci Lett 312:471–483

    Google Scholar 

  • Narbonne GM, Gehling JG (2003) Life after snowball; the oldest complex Ediacaran fossils. Geology 31:27–30

    Google Scholar 

  • Och LM, Shields-Zhou GA (2012) The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci Rev 110:26–57

    Google Scholar 

  • Paliwal BS (2007) Some fossil like structures in the rocks of the Marwar Supergroup, Western Rajasthan, India. In: Avadich PC, Bhu H (eds) Emerging trends of research in geology (NW India). Department of Geology, Mohanlal Sukhadia University, Udaipur, pp 1–8

    Google Scholar 

  • Pandey DK, Uchman A, Kumar V, Shekhawat RS (2014) Cambrian trace fossils of the Cruziana ichnofacies from the Bikaner-Nagaur Basin, north western Indian Craton. J Asian Earth Sci 81:29–141

    Google Scholar 

  • Pandey SK, Sharma M (2017) Enigmatic Ediacaran megascopic bedding plane structures on the Sonia Sandstone, Jodhpur Group, Marwar Supergroup, India: seaweed or problematica? Geol J 52:784–807

    Google Scholar 

  • Pareek HS (1981) Basin configuration and sedimentary stratigraphy of western Rajasthan. J Geol Soc India 22:517–527

    Google Scholar 

  • Pareek HS (1984) Pre-Quaternary geology and mineral resources of northwestern Rajasthan. Geol Surv India Mem 115:1–95

    Google Scholar 

  • Peterson BG, Carl P, Boudt K, Bennett R, Ulrich J, Zivot E (2014) PerformanceAnalytics: econometric tools for performance and risk analysis. R Pack Vers 1(3541):107

    Google Scholar 

  • Pi DH, Liu CQ, Shields-Zhou GA, Jiang SY (2013) Trace and rare earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China: constraints for redox environments and origin of metal enrichments. Precambrian Res 225:218–229

    Google Scholar 

  • Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014) Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346(6209):635–638

    Google Scholar 

  • Prasad B, Asher R, Borgohai B (2010) Late Neoproterozoic (Ediacaran)-Early Paleozoic (Cambrian) Acritarchs from the MarwarSupergroup, Bikaner-Nagaur Basin, Rajasthan. J Geol Soc India 75(2):415–431

    Google Scholar 

  • Sarkar S, Bose PK, Samanta P, Sengupta P, Eriksson PG (2008) Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India and their implications for Proterozoic sedimentation. Precambrian Res 162:248–263

    Google Scholar 

  • Sawaki Y, Tahata M, Komiya T, Hirata T, Han J, Shu D (2018) Redox history of the three gorges region during the Ediacaran and early Cambrian as indicated by the Fe isotope. Geosci Front 9:155–172

    Google Scholar 

  • Schrὂder S, Grotzinger JP (2007) Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman. J Geol Soc 164:175–187

    Google Scholar 

  • Shapiro L, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate rocks. U S Geol Surv Bull 48:49–55

    Google Scholar 

  • Sharma M, Ahmad S, Pandey SK, Kumar K (2018a) On the ichnofossil Treptichnus pedum: inferences from the Nagaur Sandstone, Marwar Supergroup, India. Bull Geosci 93(3):305–325

    Google Scholar 

  • Sharma M, Pandey SK, Ahmad S, Kumar K, Ansari AH (2018b) Observations on the ichnospecies Monomorphichnus multilineatus from the Nagaur Sandstone (Cambrian Series 2-Stage 4), Marwar Supergroup, India. J Earth Syst Sci 127:75

    Google Scholar 

  • Singh BP, Bhargava ON, Chaubey RS, Kishore N (2014) Ichnology and depositional environment of the Cambrian Nagaur Sandstone (Nagaur Group) along the Dulmera Section, Bikaner Nagaur Basin, Rajasthan. Acta Geol Sinica 88:1665–1680

    Google Scholar 

  • Singh BP, Bhargava ON, Naval K, Ahluwalia AD (2013) Arthropod from the Bikaner-Nagaur Basin, Peninsular India. Curr Sci 104(6):706–707

    Google Scholar 

  • Srivastava P (2012a) Treptichnus pedum: an ichnofossil representing Ediacaran- Cambrian boundary in the Nagaur Group, the Marwar Supergroup, Rajasthan, India. Proc Indian Natl Sci Acad 78:161–169

    Google Scholar 

  • Srivastava P (2012b) Problematic worms and priapulid-like fossils from the Nagaur Group, the Marwar Supergroup. India Ichnos 19(3):156–164

    Google Scholar 

  • Srivastava P (2012c) Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: a biological diversification or taphonomic interplay? Int J Geosci 3:1120–1126

    Google Scholar 

  • Srivastava P (2014) Largest Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: their palaeobiological significance. Geosci Front 5(2):183–191

    Google Scholar 

  • Torsvik TH, Ashwal LD, Tucker RD, Eide EA (2001) Neoproterozoic geochronology and palaeogeography of the Seychelles microcontinent: the India link. Precambrian Res 110:47–59

    Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1–2):12–32

    Google Scholar 

  • Wang XQ, Shi XY, Jiang GQ, Tang DJ (2014) Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform. Sci China Earth Sci 57(5):919–929

    Google Scholar 

  • Wood RA (2011) Paleoecology of the earliest skeletal metazoan communities: implications for early biomineralization. Earth Sci Rev 106:184–190

    Google Scholar 

  • Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24(1):31–40

    Google Scholar 

  • Zhang F, Xiao S, Kendall B, Romaniello Stephen J, Huan C, Meyer M, Gilleaudeau Geoffrey J, Kaufman Alan J, Anbar AD (2018) Extensive marine anoxia during the terminal Ediacaran Period. Sci Adv 4(6):eaan8983

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Director, BSIP for her support. A detailed discussion with Prof. I. B. Singh is greatly acknowledged. This work was funded by DST-SERB Young Scientist Grant; Project no. SR/FTP/ES-107/2014. This is a BSIP contribution number (BSIP/RDCC/59/2017-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.H., Pandey, S.K., Kumar, K. et al. Palaeoredox link with the late Neoproterozoic–early Cambrian Bilara carbonate deposition, Marwar Supergroup, India. Carbonates Evaporites 35, 38 (2020). https://doi.org/10.1007/s13146-020-00574-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00574-9

Keywords

Navigation