Skip to main content

Advertisement

Log in

ASTER-based remote sensing investigation of gypsum in the Kohat Plateau, north Pakistan

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Gypsum is an important industrial mineral, the demand of which has increased manifold over the years, especially due to growing cement industry. Considering the industrial significance of gypsum, we employed advanced space-borne thermal emission and reflection radiometer (ASTER) multispectral data to map gypsum outcrops in the Kohat area, northern Pakistan. Kohat area, also known as Kohat Plateau, is the western extension of the Himalaya fold–thrust belt, characterized by Eocene gypsum reserves at many places, striking generally in east–west direction. In the present research, an attempt has been made to map the outcrops of gypsum through several remote sensing mapping techniques. These techniques include band ratio 4 + 8/6, decorrelation stretch RGB-468 composite, Principle Component PC4 and thermal infrared bands 10, 11 and 12 used as sulfate index. All these methods have helped in discriminating the gypsum outcrops from surrounding various lithologies, illustrating that ASTER is a powerful tool to map different rocks units in arid, remote and inaccessible areas. Results were verified through field mapping at numerous selected stations within proposed study area, which were further confirmed through X-ray analysis of selected gypsum specimens. The results of the applied techniques were compared with each other to better asses and evaluate their effectiveness and accuracy. Overall, all the methods successfully mapped gypsum; however, PC4 results exhibit higher degree of accuracy compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbasi IA, Mcelroy R (1991) Thrust kinematics in the Kohat Plateau, Trans Indus Range, Pakistan. J Struc Geol 13:319–327

    Article  Google Scholar 

  • Abdeen MM, Thurmond AK, Abdelsalam MG, Stern RJ (2001) Application of ASTER band-ratio images for geological mapping in arid regions: the Neoproterozoic Allaqi Suture, Egypt. In: Proceedings of GSA 2001 Annual Meeting. Boston: Geological Society of America, 289

  • Abrams M (2000) The advanced spaceborne thermal emission and reflection radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21:847–859

    Article  Google Scholar 

  • Amer R, Kusky T, Ghulam A (2010) Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci 56:75–82

    Article  Google Scholar 

  • Amer R, Kusky T, El Mezayen A (2012) Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Adv Space Res 49:121–134

    Article  Google Scholar 

  • Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113:711–715

    Article  Google Scholar 

  • Ben-Dor E, Kruse FA, Lefkoff AB, Banin A (1995) Comparison of three calibration techniques for utilization of GER 63-channel aircraft scanner data of Makhtesh Ramon, Negev, Israel. Int J Rock Mech Mining Sci Geomech Abstr 4:164

    Google Scholar 

  • Bonis NR (1985) Paleocurrent Analysis of Siwalik Strata in the Trans-Indus Region, Northwestern Pakistan. PhD Thesis, Dartmouth College, Hanover, USA

  • Carranza EJM, Hale M (2002) Mineral imaging with landsat thematic mapper data for hydrothermal alteration mapping in heavily vegetated terrane. Int J Remote Sens 23:4827–4852

    Article  Google Scholar 

  • Crist EP, Cicone RC (1984) A physically-based transformation of thematic mapper data—the TM tasseled cap. IEEE T Geosci Remote 3:256–263

    Article  Google Scholar 

  • Crosta A, Moore J (1989) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: a prospecting case history in greenstone belt terrain. In: Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology. Calgary, Canada, pp 1173–1187

  • Crosta AP, De Souza Filho CR, Azevedo F, Brodie C (2003) Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int J Remote Sens 24:4233–4240

    Article  Google Scholar 

  • Crowley JK (1991) Visible and near-infrared (0.4–2.5 μm) reflectance spectra of Playa evaporite minerals. J Geophys Res-Sol Ea 96:16231–16240

    Article  Google Scholar 

  • Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38:59–69

    Article  Google Scholar 

  • Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11:326–335

    Article  Google Scholar 

  • Ghosh A, Tiwari AK, Das S (2015) A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Model Earth Sys Environ 1:11

    Article  Google Scholar 

  • Gillespie AR (1992) Enhancement of multispectral thermal infrared images: decorrelation contrast stretching. Remote Sens Environ 42:147–155

    Article  Google Scholar 

  • Gillespie AR, Kahle AB, Walker RE (1986) Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sens Environ 20:209–235

    Article  Google Scholar 

  • Hewson RD, Cudahy TJ, Huntington JF (2001) Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. In: Geoscience and Remote Sensing Symposium, 2001. IGARSS’01. IEEE 2001 International, pp 724–726

  • Hewson R, Cudahy T, Mizuhiko S, Ueda K, Mauger A (2005) Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sens Environ 99:159–172

    Article  Google Scholar 

  • Hosseinjani M, Tangestani MH (2011) Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran. Int J Digital Earth 4:487–504

    Article  Google Scholar 

  • Hunt GR, Salisbury JW, Lenhoff CJ (1971) Visible and near infrared spectra of minerals and rocks. IV. Sulphides and sulfates. Moder Geology 3:1–14

    Google Scholar 

  • Jackson RD (1983) Spectral indices in n-space. Remote Sens Environ 13:409–421

    Article  Google Scholar 

  • Kavak K (2005) Recognition of gypsum geohorizons in the Sivas Basin (Turkey) using ASTER and Landsat ETM + images. Int J Remote Sens 26:4583–4596

    Article  Google Scholar 

  • Khan SD, Mahmood K (2008) The application of remote sensing techniques to the study of ophiolites. Earth Sci Rev 89:135–143

    Article  Google Scholar 

  • Khan A, Shafique M (2016) Remote Sensing investigation of Gypsum in Kohat Plateau, Pakistan. In: Earth Sciences Pakistan, Journal of Himalayan Earth Sciences, Abstract volume, 76

  • Khan SD, Mahmood K, Casey JF (2007) Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. J Asian Earth Sci 30:333–343

    Article  Google Scholar 

  • Loughlin W (1991) Principal component analysis for alteration mapping. Photogramm Eng Rem S 57:1163–1169

    Google Scholar 

  • Madani A, Emam A (2011) SWIR ASTER band ratios for lithological mapping and mineral exploration: a case study from El Hudi area, southeastern desert. Egypt. Arab J Geosci 4:45–52

    Article  Google Scholar 

  • Mars JC, Rowan LC (2006) Regional mapping of phyllic-and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere 2:161–186

    Article  Google Scholar 

  • Mars JC, Rowan LC (2010) Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens Environ 114:2011–2025

    Article  Google Scholar 

  • Mars JC, Rowan LC (2011) ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere 7:276–289

    Article  Google Scholar 

  • Meissner JCR, Master J, Rashid M, Hussain M (1974) Stratigraphy of the Kohat quadrangle, Pakistan. Geological Survey of Pakistan professional paper 716D

  • Molan YE, Refahi D, Tarashti AH (2014) Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. Int J Appl Earth Obs 27:117–127

    Article  Google Scholar 

  • Moore F, Rastmanesh F, Asadi H, Modabberi S (2008) Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data. Int J Remote Sens 29:2851–2867

    Article  Google Scholar 

  • Ninomiya Y (2002) Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. In: Proceedings of SPIE, pp 191–203

  • Ninomiya Y, Fu B (2016) Regional lithological mapping using ASTER-TIR data: case study for the Tibetan Plateau and the surrounding area. Geosciences 6:39

    Article  Google Scholar 

  • Öztan NS (2008) Evaporate mapping in Bala Region (Ankara) by remote sensing techniques. M.Sc Thesis, Department of Geological Engineering, Middle East Technical University, Ankara, Turkey

  • Öztan SN, Süzen LM (2011) Mapping evaporate minerals by ASTER. Int J Remote Sens 32:1651–1673

    Article  Google Scholar 

  • Panagopoulos GP, Bathrellos GD, Skilodimou HD, Martsouka FA (2012) Mapping urban water demands using multi-criteria analysis and GIS. Water Resour Mgmt 26:1347–1363

    Article  Google Scholar 

  • Pivnik DA (1992) Depositional response to encroachment of Himalayan compressional and transpressional deformation on the northern Pakistan foreland. PhD Thesis, Dartmouth College, Hanover, United States

  • Pivnik DA, Wells NA (1996) The transition from Tethys to the Himalaya as recorded in northwest Pakistan. Geol Soc Am Bull 108:1295–1313

    Article  Google Scholar 

  • Pour AB, Hashim M (2011) Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J Asian Earth Sci 42:1309–1323

    Article  Google Scholar 

  • Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9

    Article  Google Scholar 

  • Pour AB, Hashim M, Marghany M (2011) Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int J Phys Sci 6:917–929

    Google Scholar 

  • Pour AB, Hashim M, Van Genderen J (2013) Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia. Ore Geol Rev 54:181–196

    Article  Google Scholar 

  • Pournamdari M, Hashim M, Pour AB (2014) Application of ASTER and Landsat TM data for geological mapping of Esfandagheh ophiolite complex, southern Iran. Resour Geol 64:233–246

    Article  Google Scholar 

  • Qari M, Madani A, Matsah M, Hamimi Z (2008) Utilization of Aster and Landsat data in geologic mapping of basement rocks of Arafat Area, Saudi Arabia. Arab J Sci Eng 33:99–116

    Google Scholar 

  • Rajendran S, Nasir S (2014a) ASTER mapping of limestone formations and study of caves, springs and depressions in parts of Sultanate of Oman. Environl Earth Sci 71:133–146

    Article  Google Scholar 

  • Rajendran S, Nasir S (2014b) ASTER spectral sensitivity of carbonate rocks—study in Sultanate of Oman. Adv Space Res 53:656–673

    Article  Google Scholar 

  • Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-Abri AH, Kusky TM, Ghulam A (2012) ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: exploration strategy. Ore Geol Rev 44:121–135

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  • Rowan LC, Schmidt RG, Mars JC (2006) Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens Environ 104:74–87

    Article  Google Scholar 

  • Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183

    Article  Google Scholar 

  • Salati S, Van Ruitenbeek F, Van Der Meer F, Naimi B (2014) Detection of alteration induced by onshore gas seeps from ASTER and WorldView-2 data. Remote Sens 6:3188–3209

    Article  Google Scholar 

  • San B, Sumer E, Gurcay B (2004) Comparison of band ratioing and spectral indices methods for detecting alunite and kaolinite minerals using ASTER data in Biga region, Turkey. In: Proceedings of ISPRS, pp 77–82

  • Shirazi S, Imran H, Akib S, Yusop Z, Harun Z (2013) Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environl Earth Sci 70:2293–2304

    Article  Google Scholar 

  • Singh A, Harrison A (1985) Standardized principal components. Int J Remote Sens 6:883–896

    Article  Google Scholar 

  • Soha J, Schwartz A (1979) Multispectral histogram normalization contrast enhancement. In: 5th Canadian Symposium on Remote Sensing, pp 86–93

  • Tangestani M, Moore F (2001) Comparison of three principal component analysis techniques to porphyry copper alteration mapping: a case study, Meiduk area, Kerman, Iran. Can J Remote Sens 27:176–182

    Article  Google Scholar 

  • Tangestani M, Moore F (2002) Porphyry copper alteration mapping at the Meiduk area. Iran. Int J Remote Sens 23:4815–4825

    Article  Google Scholar 

  • Tiwari AK, Lavy M, Amanzio G, De Maio M, Singh PK, Mahato MK (2017a) Identification of artificial groundwater recharging zone using a GIS-based fuzzy logic approach: a case study in a coal mine area of the Damodar Valley, India. Appl Water Sci 7:4513–4524

    Article  Google Scholar 

  • Tiwari AK, Nota N, Marchionatti F, De Maio M (2017b) Groundwater-level risk assessment by using statistical and geographic information system (GIS) techniques: a case study in the Aosta Valley region, Italy. Geomat Nat Haz Risk 8:1396–1406

    Article  Google Scholar 

  • Tommaso DI, Rubinstein N (2007) Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol Rev 32:275–290

    Article  Google Scholar 

  • Tucker M (2003) Sedimentary rocks in the field: the geological field guide series

  • Van Der Meer FD, Van Der Werff HMA, Van Ruitenbeek FJA, Hecker CA, Bakker WH, Noomen MF, Van Der Meijde M, Carranza EJM, Smeth JBD, Woldai T (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs 14:112–128

    Article  Google Scholar 

  • Wells NA (1983) Transient streams in sand-poor redbeds: early-middle Eocene Kuldana Formation of Northern Pakistan. In: Collinson J, Lewin J (eds) Modern and ancient fluvial systems, international association of sedimentologists special publications, vol 6. Blackwell, Oxford, pp 393–403

    Chapter  Google Scholar 

  • Xiong Y, Khan SD, Mahmood K, Sisson VB (2011) Lithological mapping of Bela ophiolite with remote-sensing data. Int J Remote Sens 32:4641–4658

    Article  Google Scholar 

  • Yamaguchi Y, Naito C (2003) Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int J Remote Sens 24:4311–4323

    Article  Google Scholar 

  • Yamaguchi Y, Fujisada H, Kudoh M, Kawakami T, Tsu H, Kahle A, Pniel M (1999) ASTER instrument characterization and operation scenario. Adv Space Res 23:1415–1424

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Bednarik M (2011) Gypsum collapse hazards and importance of hazard mapping. Carbonates Evaporites 26:193–209

    Article  Google Scholar 

  • Zhang X, Pazner M, Duke N (2007) Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J Photogramm 62:271–282

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Higher Education Commission, Pakistan under Pak-US Science and Technology Cooperation Program Phase-VII with project entitled “Hydrocarbon Potential of the northern Pakistan fold-thrust belt”. We thank National Centre of Excellence in Geology, University of Peshawar for logistic support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Faisal, S., Shafique, M. et al. ASTER-based remote sensing investigation of gypsum in the Kohat Plateau, north Pakistan. Carbonates Evaporites 35, 3 (2020). https://doi.org/10.1007/s13146-019-00543-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-019-00543-x

Keywords

Navigation