Skip to main content
Log in

Evidence of high-energy storm and shallow water facies in Pabdeh sedimentary phosphate deposit, Kuhe-Lar-anticline, SW Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Kuhe-Lar sedimentary phosphate deposit is a major phosphate prospect located in Zagros folded basin in the flank of the Kuhe-Lar-anticline in the southeast of Iran. Phosphate deposits in the Middle East extend in Neo-Tethys basin rim through several countries from North Africa, Syria, Iraq, Turkey, Iran, and Oman. The sedimentary phosphate mineralization occurred in the Pabdeh Formation, which is comprised of a marl, limestone, and shale sequence. Based on comprehensive field and laboratory studies, facies zones, standards microfacies, and standard ramp microfacies were recognized in the Pabdeh Formation. Sedimentary features such as tempestite, hummocky cross stratification, ripple marks, couplets of fine and coarse laminae, erosional surface, graded bedding, and shell lag features strongly supported a high-energy storm and shallow water depositional conditions. The main evidence of storm origin for the Pabdeh Formation is the occurrence of sandstones interbedded with bioturbated mudstones commonly as upward fine grade forms. Negative carbon isotopic composition (δ13C, − 1.85 to − 4.89) of bulk phosphatic rock shows that it may be formed within the suboxic-to-anoxic zone, almost 100-cm depths (under seafloor). These values are within the range of recent and ancient phosphorites, suggesting their good preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adabi MH, Kakemem U, Sadeghi A (2016) Sedimentary facies depositional environment and sequence stratigraphy of oligocene–miocene shallow water carbonate from the rig mountain, Zagros basin (SW Iran). Carbonates Evaporites 31:69–85

    Article  Google Scholar 

  • Al-Bassam KS (1980) Carbon and oxygen isotopic composition of some marine sedimentary apatites from Iraq. Econ Geol 75:1231–1233

    Article  Google Scholar 

  • Al-Bassam KS, Al-Dahan AA, Jamil AK (1983) Campanian-Maastrichtian phosphorites of Iraq, Petrology, geochemistry and genesis. Miner Depos 18:215–233

    Article  Google Scholar 

  • Aba-Hussain AA, Al-Bassam KS, Al-Rawi YT (2010) Rare earth elements geochemistry of some paleocene carbonate fluorapatites in Iraq. Iraqi Bull Geol Min 6(1):81–94

    Google Scholar 

  • Al-Sharhan AS, Nairn AEM (1997) Sedimentary basins and petroleum geology of the middle east. Elsevier, Amsterdam, p 843

    Google Scholar 

  • Asadi Mehmandousti E, Adabi MH, Bowden SA, Alizadeh B (2015) Geochemical investigation, oil–oil and oil–source rock correlation in the Dezful Embayment, Marun Oilfield, Zagros, Iran, Marine and Petroleum Geology, vol 68

  • Asfahani J, Aissa M, Al-Hent R (2005) Statistical factor analysis of aerial spectrometric data, Al-Awabed area, Syria: a useful guide for phosphate and uranium exploration. Appl Radiat Isot 62:649–661

    Article  Google Scholar 

  • Barber DA (1974) The absorption of ions by microorganisms and excised roots. New Phytol 73:91–96

    Article  Google Scholar 

  • Benni T (2013) Phosphate deposits of Iraq, Geological Survey of Iraq. In: UNFC workshop, Santiago, Chile, (July 9–12, 2013), pp 1–18. (https://www.unece.org/fileadmin/DAM/energy/se/pp/unfc_egrc/unfc_ws_IAEA_CYTED_UNECE_Santiago_July2013/12_July/4_Benni_Iraq_PhosDepos.pdf). Accessed 12 July 2013

  • Berberian M, King G (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Article  Google Scholar 

  • Burnett WC (1980) Apatiteglauconite associations off Peru and Chile: palaeooceanographic implication. J Geol Soc London 137:757–764

    Article  Google Scholar 

  • Bolourchifard F, Memar A (2015) The study of phosphate rock forming minerals (francolite) of Iran through the EDX-SEM to assessment of compositions in nano-scale. Proc Mater Sci 11:108–113

    Article  Google Scholar 

  • Brookfield MN, Hemmings DP, Van Straaten P (2009) Paleoenvironments and origin of the sedimentary phosphorites of the Napo Formation (Late Cretaceous, Oriente Basin, Ecuador). J S Am Earth Sci 28:180–192

    Article  Google Scholar 

  • Burchette T, Wright V (1992) Carbonate ramp depositional systems. Sed Geol 79:3–57

    Article  Google Scholar 

  • Compton JS, Hodell DA, Garrido JR, Mallinson DJ (1993) Origin and age of phosphorite from the south-central Florida Platform: Relation of phosphogenesis to sea-level fluctuation 13C excursion. Geochim Cosmochim Acta 57:131–146

    Article  Google Scholar 

  • Darvishzad B, Ghasemi-Nejad E, Ghourchaei S, Keller G (2007) Planktonic foraminiferal biostratigraphy and faunal turnover across the Cretaceous-Tertiary boundary in southwestern Iran. J Sci Iran 18:139–149

    Google Scholar 

  • Dehghani G, Makris J (1984) The gravity field and crustal structure of Iran. Neues Jahrbuch für Geologie und Paläontologie 168:215–229

    Article  Google Scholar 

  • Diaz J, Ellery I, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, Brandes JA (2008) Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320(2008):652–655

    Article  Google Scholar 

  • Dickson J (1965) A modified staining technique for carbonates in thin section. Nature 205:587

    Article  Google Scholar 

  • Dumas S, Arnott R (2006) Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34:1073–1076

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to their depositional texture. In: Ham WE (Ed) Classification of carbonate rocks—a symposium. American Association of Petroleum Geologists Memoir, Tulsa, Ok, vol 1, pp 108–121

  • Flügel E (2010) Integrated facies analysis. Microfacies of carbonate rocks. Springer, Berlin, pp 641–656

    Book  Google Scholar 

  • Gerhard E (2000) Sedimentary Basins evolution, facies and sediment budget, 2nd edn. Springer, Berlin

    Google Scholar 

  • Guilbert JM, Park CF (2007) The geology of ore deposits. Waveland Press, Long Grove

    Google Scholar 

  • Haq BU (2009) Sequence stratigraphy, sea-level change, and significance for the deep sea. Sedimentation, Tectonics and Eustasy. Int Assoc Sedimentol Spec Publ 12:3–39

    Google Scholar 

  • Heydari E (2008) Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics 451:56–70

    Article  Google Scholar 

  • Jarvis I (1980) Geochemistry of phosphatic chalks and hardgrounds from the Santonian to early Campanian (Cretaceous) of northern France. J Geol Soc 137:705–721

    Article  Google Scholar 

  • Jarvis I (1992) Sedimentology, geochemistry and origin of phosphatic chalks: the upper cretaceous deposits of NW Europe. Sedimentology 39:55–97

    Article  Google Scholar 

  • John CM, Mutti M, Adatte T (2003) Mixed carbonate-siliciclastic record on the North African margin (Malta)—coupling of weathering processes and mid Miocene climate. Geol Soc Am Bull 115:217–229

    Article  Google Scholar 

  • Joudaki M, Baghbani D (2018) Biostratigraphy of Oligocene and Lower Miocene deposits, Anneh Anticline, Folded Zagros, SW of Iran. Carbonates Evaporites 33:509–515

    Article  Google Scholar 

  • Leturmy P, Robin C (2010) Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic: introduction. Geol Soc Lond Special Publ 330:1–4

    Article  Google Scholar 

  • McArthur JM (1980) Post-depositional alteration of the carbonate-flourapatite phase of Moroccan phosphates. Soc Econ Paleontol Mineral Special Publ 29:53–60

    Google Scholar 

  • McArthur JM (1985) Francolite geochemistry-compositional controls during formation, diagenesis, metamorphism, and weathering. Geochim Cosmochim Acta 49:23–35

    Article  Google Scholar 

  • McArthur JM, Benmore RA, Coleman ML, Soldi C, Yeh HW, O‘Brien, GW (1986) Stable isotopic characterization of francolite formation. Sci Lett 77:20–34

    Google Scholar 

  • McArthur JM, Hamilton PJ, Greensmith JT, Boyce AJ, Fallick AE, Birch G, Walsh JN, Benmore RA, Coleman ML (1987) Phosphorite geochemistry: isotopic evidence for meteoric alteration of francolite on a local scale. Chem Geol (Isotopic Geoscience Section) 65:415–425

    Article  Google Scholar 

  • McCrory VL, Walker RG (1986) A storm and tidally-influenced prograding shoreline—upper cretaceous milk river formation of Southern Alberta, Canada. Sedimentology 33:47–60

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan Zone, western Iran. J Asian Earth Sci 21:379–412

    Article  Google Scholar 

  • Mohseni H, Al-Aasm I (2004) Tempestite deposits on a storm-influenced carbonate ramp: an example from the Pabdeh Formation (Paleogene), Zagros Basin, SW Iran. J Pet Geol 27:163–178

    Article  Google Scholar 

  • Motiei H (2003) Stratigraphy of Zagros, treatise on the geology of Iran. Geology Survey Press, Tehran, p 583

    Google Scholar 

  • Nathan Y, Nielsen H (1980) Sulfur isotopes in phosphorites. In: Bentor Y, Marine phosphorites. The Society of Economic Paleontologists and Mineralogists (SEPM) (Special Publications), vol 29, pp 73–78

  • Navabpour P, Barrier E (2012) Stress states in the Zagros fold-andthrust belt from passive margin to collisional tectonic setting. In: Gudmundsson A, Bergerat F, Crustal stresses, fractures, and fault zones: the Legacy of Jacques Angelier, Tectonophysics, vol 581, pp 76–83

  • Notholt A, Sheldon R, Davidson D (2005) Phosphate deposits of the world: volume 2, phosphate rock resources. Cambridge University Press, Cambridge

    Google Scholar 

  • Özgüner AM, Varol B (2009) The genesis, mineralization, and stratigraphic significance of phosphatic/glauconitic condensed limestone unit in the Manavgat Basin, SW Turkey. Sediment Geol 221:40–56

    Article  Google Scholar 

  • Parrish JT (1987) Lithology, geochemistry, and depositional environment of the Shublik Formation (Triassic), northern Alaska. In: Tailleur IL, Weimer P (eds) Alaskan north slope geology, volume 1: Pacific section. Society of Economic Paleontologists and Mineralogists and Alaska Geological Society, vol 50, pp 391–396

  • Parrish JT (1990) Paleoceanographic and paleoclimatic setting of the Miocene phosphogenic episode. Phosphate Depos Filipelli Delaney Phosphorus Continent Weather World 3:223–240

    Google Scholar 

  • Parrish JT, Curtis RL (1982) Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr Palaeoclimatol Palaeoecol 40:3–66

    Article  Google Scholar 

  • Parrish JT, Droser ML, Bottjer DJ (2001) A Triassic upwelling zone: the Shublik formation. Arctic Alaska, USA. J Sediment Res 71:272–285

    Article  Google Scholar 

  • Rees A, Thomas A, Lewis M, Hughes H, Turner P (2014) Lithostratigraphy and palaeoenvironments of the Cambrian in SW Wales. Geol Soc Lond Mem 42:33–100

    Article  Google Scholar 

  • Sadaqah RM, Abed AM, Grimm KA, Pufahl PK (2007) Oxygen and carbon isotopes in Jordanian phosphorites and associated fossils. Sci Direct J Asian Earth Sci 29:803–812

    Article  Google Scholar 

  • Şengör A (1990) A new model for the late Palaeozoic–Mesozoic tectonic evolution of Iran and implications for Oman. Geol Soc Lond Special Publ 49:797–831

    Article  Google Scholar 

  • Sepehr M, Cosgrove J (2004) Structural framework of the Zagros fold—thrust belt, Iran. Mar Pet Geol 21:829–843

    Article  Google Scholar 

  • Sheldon RP (1980) Episodicity of phosphate deposition and deep ocean circulation-a hypothesis. Copyright©2012. Soc Econ Paleontol Mineral Special Publ 29:239–247

    Google Scholar 

  • Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variation in phosphate of biogenic apatites. II. Phosphorite rocks. Earth Planet Sci Lett 64:405–416

    Article  Google Scholar 

  • Shemesh A, Kolodny Y, Luz B (1988) Isotopic geochemistry of oxygen and carbon in phosphate and carbonate of Phosphorite francolite. Geochim Cosmochim Acta 52:2565–2572

    Article  Google Scholar 

  • Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Mar Pet Geol 21:535–554

    Article  Google Scholar 

  • Swe SM, Masanori O (2012) Investigation of Cd contents in several phosphate rocks used for the production of fertilizer. Microchem J 104:17–21

    Article  Google Scholar 

  • Tribovillard N, Algeo T, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies. An update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Tribovillard N, Recourt P, Trentesaux A (2010) Bacterial Calcification as a possible trigger for francolite precipitation under sulfidic condition. Comptes Rendus Geosci 342:27–35

    Article  Google Scholar 

  • Vanbuchem FSP, Gerdes KD, Esteban M (2010) (eds) Mesozoic and Cenozoic carbonate systems of the Mediterranean and the middle east: stratigraphic and diagenetic reference models. Geological Society, London, Special Publications, vol 329, pp 1–7. https://doi.org/10.1144/sp329.10305-8719/10/$15.00%23. The Geological Society of London

  • Walter RG, Walker RG (1984) Facies models. Geological Association of Canada Geological Association of Canada, St. John’s

    Google Scholar 

  • Wrobel-Daveau JC, Ringenbach JC, Tavakoli S, Ruiz GMH, Masse P, de Lamotte DF (2010) Evidence for mantle exhumation along the Arabian margin in the Zagros (Kermanshah area, Iran). Arab J Geosci 3:499–513

    Article  Google Scholar 

  • Zuza AV, Yin A (2009) Balkatach hypothesis: a new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. Geosphere 13(5):1664–1712

    Article  Google Scholar 

Download references

Acknowledgements

This research was generously funded by the Government of the Islamic Republic of Iran to Mr. F. Bolourchifard. The correspondent author is greatly indebted to his Ph.D. A critical review of the original draft and valuable comments by Prof. Adabi, M. H. and Dr. Mossadegh, H. improved the manuscript. Logistics for fieldwork and thin-section preparation were provided by Kharazmi University of Tehran (Faculty of Earth Science) (Obituary: Dr. A. Memar K.: unfortunately unexpectedly and, one of the co-authors passed away, which is a great loss).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Bolourchifard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolourchifard, F., Fayazi, F., Mehrabi, B. et al. Evidence of high-energy storm and shallow water facies in Pabdeh sedimentary phosphate deposit, Kuhe-Lar-anticline, SW Iran. Carbonates Evaporites 34, 1703–1721 (2019). https://doi.org/10.1007/s13146-019-00520-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-019-00520-4

Keywords

Navigation