Advertisement

Katian oncoids of the lower Ordovician Lianglitage Formation in the Tarim Basin, Northwest China

  • Shi Pingzhou
  • Tang HongmingEmail author
  • Wang Zhengyu
  • Sha Xuguang
Original Article
  • 16 Downloads

Abstract

This study examines oncoids and their diagenetic structures in the lower Ordovician (Katian Stage) Lianglitage Formation in the Tarim Basin, Northwest China. Oncoid morphologies range from spherical and sub-spherical to irregular. Individual oncoids generally range from 4 to 10 mm in diameter, with an average of 8 mm and a maximum of 18 mm. Microbial fossils, including gastropods, sponges, trilobite skeletons, and bryozoans, are abundant in oncoid nuclei. Densely packed, calcified microbial clumps are also observed in some nuclei. Microbial remnants in oncoid cortices appear mainly as filaments. Alternating light and dark laminae are obvious in the oncoid cortices, and both sets of laminae contain extracellular polymeric substances, nanoparticles, and microcrystalline calcite. This suggests that oncoid formation was the result of interaction between microbial chemical processes and the external environment. Microbes and heterotrophic organisms provide the building material for oncoid nuclei formation, and frequent fluctuations in sea level provide favorable hydrodynamic conditions.

Keywords

Oncoid Microbiological diagenesis Extracellular polymeric substance Tarim plate 

Notes

Acknowledgements

Editor and two anonymous referees have contributed much to improve the quality of this article by constructive comments and suggestions. The authors thanks Mr. Xie Lin from the Rock and Mineral Laboratory of the College of Geoscience and Technology, Southwest Petroleum University, for assistance with FESEM analyses. The authors thanks Stallard Scientific Editing for editing the language. The authors were supported by a project of the China Petroleum Chemical Northwest Oilfield Branch (no. 2017KY018ZB).

References

  1. Aloisi G, Gloter A, Krüger M, Wallmann K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nano globules. Geology 34:1017–1020.  https://doi.org/10.1130/G22986A.1 Google Scholar
  2. Altermann W (2008) Accretion, trapping and binding of sediment in Archean stromatolites—morphological expression of the antiquity of life. Space Sci Rev 135(1–4):55–79Google Scholar
  3. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292(5522):1701–1704Google Scholar
  4. Azerêdo AC, Ricardo LS, Luís VD, Cabral MC (2009) Subtidal stromatolites from the Sinemurian of the Lusitanian Basin (Portugal). Facies 56(2):211–230Google Scholar
  5. Barrett J, Spentzos A, Works C (2009) Isolation and characterization of extracellular polymeric substances from micro-algae dunaliella salina under salt stress. Bioresour Technol 100(13):3382–3386Google Scholar
  6. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185(3):131–145Google Scholar
  7. Benzerara K, Menguy N, López-García P (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Nat Acad Sci USA 103(25):9440–9445Google Scholar
  8. Beraldi-Campesi H, Cevallos-Ferriz SRS, Chacón-Baca E (2004) Microfossil algae associated with cretaceous stromatolites in the Tarahumara Formation, Sonora Mexico. Cretac Res 25(2):249–265Google Scholar
  9. Bontognali TRR, Vasconcelos C, Warthmann RJ (2008) Microbes produce nano bacteria-like structures, avoiding cell entombment. Geology 36(8):663–666Google Scholar
  10. Cai XY, Qian YX, Chen Y, You DH (2007) Division and correlation of middle-lower Ordovician in Tazhong area Tarim Basin. Xinjiang Pet Geol 28(3):292–295Google Scholar
  11. Chen JS, Wang ZY, Dai ZY, Ma Q, Jiang YQ, Tan XC (1999) Study of the middle and upper Ordovician rimmed carbonate platform system in the Tazhong area Tarim Basin. J Palaeogeog 1(2):8–17Google Scholar
  12. Chen X, Rong JY, Fan JX (2006) A final report on the global stratotype section and point (GSSP) for the Hirnantian stage (upper Ordovician). J Stratig 30(4):289–305Google Scholar
  13. Chen YQ, Yan W, Han CW, Yang PF, Li Z (2015) Redefinition on structural paleogeography and lithofacies paleogeography framework from Cambrian to early Ordovician in the Tarim Basin: a new approach based on seismic stratigraphy evidence. Nat Gas Geoscience 26(10):1831–1843Google Scholar
  14. Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeoclimatol Palaeoecol 219(1):71–86Google Scholar
  15. Du SX, Li Y, Song XS, Liu FC, Chen J, Chen C (2016) Lacustrine limestone of the Bianqiao Formation (Masstrichtian, latest Cretaceous) form Feixian, Shandong province, east China. Acta Micropalaeontol Sin 33(3):325–333 (in Chinese) Google Scholar
  16. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hyper saline mats. Trends Microbiol 13(9):429–436Google Scholar
  17. Dupraz C, Visscher PT, Baumgartner L, Reid R (2004) Microbe-mineral interactions: early carbonate precipitation in a hyper saline lake (Eleuthera Island, Bahamas). Sedimentology 51(4):745–765Google Scholar
  18. Feng ZZ, Bao ZD, Wu M, Jin Z, Shi X (2007) Lithofacies palaeogeography of the Ordovician in Tarim area. J Palaeogeogr 1(3):265–274Google Scholar
  19. Flügel E (2010) Microfacies of carbonate rocks: analysis, interpretation and application, 2nd edn. Springer, Berlin, pp 1–984Google Scholar
  20. Folk RL (2005) Nannobacteria and the formation of framboidal pyrite: textural evidence. J Earth Syst Sci 114:369–374Google Scholar
  21. Gautret P, Camoin G, Golubic S (2004) Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau Atoll, French Polynesia. J Sed Res 74(4):462–478Google Scholar
  22. Gradziński M, Tyszka J, Uchman A, Jach R (2004) Large microbial-foraminiferal oncoids from condensed lower–middle Jurassic deposits: a case study from the Tatra Mountains, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213(1–2):133–151Google Scholar
  23. Gu JY, Fang H, Jiang LZ (2001) The significance of Ordovician reef discovery in Tarim Basin. Petrol Explor Dev 28(4):1–3Google Scholar
  24. Gu JY, Zhang XY, Luo P, Luo Z, Fang H (2005) Development characteristics of organic reef-bank complex on Ordovician carbonate platform margin in Tarim Basin. Oil Gas Geol 26(3):277–283Google Scholar
  25. Han JF, Mei LF, Yang HJ, Wu GH, Xu ZM, Zhu GY (2007) The study of hydrocarbon origin, transport and accumulation in Tazhong area, Tarim Basin. Nat Gas Geosci 18(3):426–435Google Scholar
  26. He ZL, Chen QL, Qian YX, Li HL (2006) Hydrocarbon exploration targets in central uplift area of Tarim Basin. Oil Gas Geol 27(6):769–778Google Scholar
  27. He BZ, Jiao CL, Wang SL, Deng GZ, Wang GH, He XP (2009) Characteristics and exploration prospect of carbonate platform margin of late Ordovician Lianglitage Formation in the Tazhong area Tarim Basin. Acta Geol Sin 7(1):1–6Google Scholar
  28. Hender KLB, Dix GR (2008) Facies development of a late Ordovician mixed carbonate siliciclastic ramp proximal to the developing Taconic Orogeny: lourdes formation, Newfoundland, Canada. Facies 54:121–149Google Scholar
  29. Jia CZ (1997) Tectonic characteristics and petroleum, Tarim Basin. Petroleum Industry Press, Beijing, ChinaGoogle Scholar
  30. Jia CZ (1999) Structural characteristics and oil/gas accumulative regularity in Tarim Basin. Xinjiang Pet Geol 20(3):177–183Google Scholar
  31. Jones B (2011) Biogenicity of terrestrial oncoids formed in soil pockets, Cayman Brac, British West Indies. Sed Geol 236(1–2):95–108Google Scholar
  32. Kawaguchi T, Decho AW (2002a) Isolation and biochemical characterization of extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamas) and its inhibitory effect on CaCO3 precipitation. Prep Biochem Biotechnol 32(1):51–63Google Scholar
  33. Kawaguchi T, Decho AWA (2002b) Laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240(1):230–235Google Scholar
  34. Lemes-Da-Silva NM, Branco LHZ, Júnior ON (2012) Corticolous cyanobacteria from tropical forest remnants in northwestern São Paulo state, Brazil. Revista Brasileira De Botânica 35(2):169–179Google Scholar
  35. Li Y, Huang ZB, Wang JP, Wang ZH, Xue YS, Zhang JM (2009) Conodont biostratigraphy and sedimentology of the middle and upper Ordovician in Bachu, Xinjiang. J Stratig 33(2):113–122Google Scholar
  36. Lin CS, Yang HJ, Liu JY, Cai ZZ, Peng L, Yang XF, Yang YH (2009) Paleostructural geomorphology of the Paleozoic central uplift belt and its constraint on the development of depositional facies in the Tarim Basin. Sci China Ser D Earth Sci 52(6):823–834Google Scholar
  37. Lu XX, Hu X (1997) Hydrocarbon accumulation and distribution in Tazhong low uplift of Tarim basin. Oil Gas Geol 18(4):288–293Google Scholar
  38. Mackey TJ, Sumner DY, Hawes I, Jungblut AD, Lawrence J, Leidman S, Allen B (2017) Increased mud deposition reduces stromatolite complexity. Geology 45(7):663–666Google Scholar
  39. Mishra A, Fischer MK, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. ChemInform 48(14):2474–2499Google Scholar
  40. Ning F (2010) Characteristics and forming mechanisms of fault structures in the central Tarim uplift. Doctoral dissertation. China University of PetroleumGoogle Scholar
  41. Ouyang R, Li J, Hua B, Chang H, Chang W (2003) The distribution and features of reef in Tazhong area of Tarim basin, Northwest China. Petrol Explor Dev 30(2):33–36Google Scholar
  42. Peryt TM, Peryt D (2012) Geochemical and foraminiferal records of environmental changes during Zechstein Limestone (Lopingian) deposition in Northern Poland. Geol Q 56(1):187–198Google Scholar
  43. Qiao XF, Guo XP, Ye LS, He BZ, Zhou W (2011) Pale seismic evidence of the Caledonian movement at Katake uplift in the central Tarim, Xinjiang. Acta Petrol Sin 27(1):243–252Google Scholar
  44. Ren JY, Zhang JX, Yang HZ, Hu DS, Li P, Zhang YP (2011) Analysis of fault systems in the central uplift Tarim Basin. Acta Petrol Sin 27(1):219–230Google Scholar
  45. Renaut RW, Jones B, Rosen MR (1996) Primary silica oncoids from Orakeikorako Hot Springs, North Island. N Z. Palaios 11(5):446–458Google Scholar
  46. Reolid M, Nieto LM (2010) Jurassic Fe-Mn macro-oncoids from pelagic swells of the external Subbetic (Spain): evidences of microbial origin. Geol Acta 8(2):151–168Google Scholar
  47. Reolid M, Gaillard C, Lathuilière B (2007) Microfacies, microtaphonomic traits and foraminiferal assemblages from upper Jurassic oolitic-coral limestones: stratigraphic fluctuations in a shallowing-upward sequence (French Jura, middle Oxfordian). Facies 53(4):553–574Google Scholar
  48. Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sed Geol 185(3):229–238Google Scholar
  49. Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, Mckenzie JA, Zenobi R (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36(11):879–882Google Scholar
  50. Schlagintweit F, Gawlick HJ (2009) Oncoid-dwelling foraminifera from late jurassic shallow-water carbonates of the northern calcareous Alps (Austria and Germany). Facies 55(2):259–266Google Scholar
  51. She X, Dong Z, Gong X (2014) Seismic identification and reservoir prediction of reef flat of Upper Ordovician in northern and southern slopes of Katake uplift, middle Tarim Basin. Pet Geol Exp 36(1):16–24Google Scholar
  52. Škrinjar P, Faganeli J, Ogrinc N (2012) The role of stromatolites in explaining patterns of carbon, nitrogen, phosphorus, and silicon in the sečovlje saltern evaporation ponds (northern Adriatic Sea). J Soil Sediment 12(10):1641–1648Google Scholar
  53. Spadafora EJ, Demadrille R, Ratier B, Grévin B (2010) Imaging the carrier photo generation in nanoscale phase segregated organic hetero junctions by kelvin probe force microscopy. Nano Lett 10(9):3337–3342Google Scholar
  54. Sun CH, Zhang ZH, Wang ZY, Yu HF, Ji YG, Li XS (2011) Fossil record and growth sequence of Lianglitage reef-flat complex of Ordovician in Tazhong area. Xinjiang Pet Geol 32(3):235–238Google Scholar
  55. Tałanda M, Bajdek P, Niedźwiedzki G, Sulej T (2017) Upper Triassic freshwater oncoids from Silesia (southern Poland) and their microfossil biota. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen 284(1):43–56Google Scholar
  56. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, LondonGoogle Scholar
  57. Védrine S, Strasser A, Hug W (2007) Oncoid growth and distribution controlled by sea-level fluctuations and climate (late Oxfordian, Swiss Jura Mountains). Facies 53:535–552.  https://doi.org/10.1007/s10347-007-0114-4 Google Scholar
  58. Wang ZM, Zhang LJ, Wang ZY, Han JF, Liu YH (2007a) Features of Ordovician reef beach and exploration activities in Tarim basin. China Pet Explor 12(6):1–7Google Scholar
  59. Wang ZY, Yan W, Zhang YF, Sun CH, Yang HJ, Sun LX (2007b) Depositional characteristics of upper Ordovician platform margin reefs in well block tz16–44, Tarim Basin. Xinjiang Pet Geol 28(6):681–683Google Scholar
  60. Wang ZY, Sun CH, Yang HJ, Zhou C (2010) Formation pattern of upper Ordovician reef-bank complex along the Tazhong Slope-break I, Tarim Block NW China. Acta Geol Sin 84(4):546–552Google Scholar
  61. Wu GH, Huang GJ, Wang ZY, Dong LS, Dong RX (2007) The seismic identification and prediction of the reef in the Ordovician of the central Tarim basin. Nat Gas Ind 67(4):40–42Google Scholar
  62. Wu GH, Li QM, Zhang BS, Dong LS, Zhang YG, Zhang HQ (2005) Structural characteristics and exploration fields of no.1 faulted slope break in Tazhong area. Acta Petrolei Sinica 26(1):27–32Google Scholar
  63. Wu SQ, Qian YX, Li HL, Yang SJ, Sha XG, Xia YQ, Ma QY, Zhu XX (2012) Characteristics and main controlling factors of dolostone reservoir of the middle-lower Ordovician Yingshan formation in Katake uplift of Tarim Basin. J Palaeogeogr 14(2):209–218Google Scholar
  64. Xu GQ, Liu SG, Li GR (2005) Comparison of tectonic evolutions and petroleum geological conditions in Tazhong and Tabei Palaeohighs in Tarim Basin. Oil Gas Geol 26(1):114–119Google Scholar
  65. Yang HJ (2015) Exploration knowledge and direction of lower Proterozoic inner dolostones, Tarim Basin. Nat Gas Geosci 26(7):1213–1223Google Scholar
  66. Yang HJ, Han JF, Chen LX (2007) Characteristics and patterns of complex hydrocarbon accumulation in the lower Paleozoic carbonate rocks of the Tazhong palaeouplift. Oil Gas Geol 28(6):784–790Google Scholar
  67. Yang HJ, Zhu GY, Han JF, Wu FF, Ji YG, Su J, Wang Y (2011) Conditions and mechanism of hydrocarbon accumulation in large reef-bank karst oil/gas fields of Tazhong area, Tarim Basin. Acta Petrol Sinica 27(6):1865–1885Google Scholar
  68. Young JD, Martel J (2010) The rise and fall of nano bacteria. Sci Am 302(5):10Google Scholar
  69. Zatoń M, Kremer B, Marynowskii L (2012) Middle Jurassic (Bathonian) encrusted oncoids from the Polish Jura, southern Poland. Facies 58(1):57–77Google Scholar
  70. Zhang WH, Shi X, Jiang G, Tang D, Wang X (2015a) Mass-occurrence of oncoids at the Cambrian Series 2-Series 3 transition: implications for microbial resurgence following an early Cambrian extinction. Gondwana Res 28(1):432–450Google Scholar
  71. Zhang XY, Qi YA, Dai MY, Chai S (2015b) Coupling variation of oncoids and trace fossils in the Zhangxia formation (Cambrian series 3), Dengfeng, western Henan province. Acta Micropalaeontol Sin 2:184–193 (in Chinese) Google Scholar
  72. Zhao ZJ, Zhang YB, Pan M (2010) Cambrian sequence stratigraphic framework in Tarim Basin. Geol Rev 56(5):609–620Google Scholar
  73. Zhou G, Zheng R, Zhao G, Wen H, Wen L (2017) Characteristics, Origin and geological significance of oncolite of Givetian (Middle Devonian) in Ganxi area, northwestern Sichuan. J Jilin Univ 47(2):405–417Google Scholar
  74. Zhu DY, Jin ZJ, Hu WX (2009) Hydrothermal alteration dolomite reservoir in Tazhong area. Acta Petrolei Sinica 30(5):698–704Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Geoscience and TechnologySouthwest Petroleum UniversityChengduChina
  2. 2.Research Institute of Petroleum Exploration and Production, Northwest BranchSINOPECUrumqiChina

Personalised recommendations