Skip to main content

Advertisement

Log in

Facies characteristics and depositional environments of the middle Eocene (Lutetian) Harudi Formation, Kachchh, Western India

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The 8.5 m thick, 1.4 km long and 0.35 km wide, ESE–WNW oriented cliff section (N 23°31′32″ E 68°41′00″) exposed across Harudi–Baranda road is extensively studied for its facies characteristics and based on that depositional environments of the middle Eocene (Lutetian) Harudi Formation are deciphered in the present study. Two cycles of grey mudstone alongwith nodular limestone–coquina limestone-gypsiferous mudstone facies in the lower part of the succession suggest sedimentation in coastal quiet-water lagoonal to tidal flat environments, while glauconitic shale, bioclastic packstone and gypsiferous foraminiferal packstone facies in the upper part suggest sedimentation on middle- to inner-shelf and tidal flat depositional environments. In all, three shallowing upward cycles have been identified in the studied outcrops and based on that lagoonal-middle shelf-inner shelf-tidal flat depositional environments are suggested for the middle Eocene Harudi Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amorosi A (1997) Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sed Geol 109:135–153

    Article  Google Scholar 

  • Amorosi A (2012) The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence-stratigraphic significance. Int Assoc Sed Spec Pub 45:37–54

    Google Scholar 

  • Bajpai S, Thewissen JGM (2002) Vertebrate fauna from Panandhro Lignite Mine (Lower Eocene), District Kachchh, western India. Curr Sci 82:507–509

    Google Scholar 

  • Baldermann A, Grathoff GH, Nickel C (2012) Micromilieu controlled glauconitization in fecal pellets at Oker (Central Germany). Clay Miner 47:513–538

    Article  Google Scholar 

  • Banerjee S, Jeevankumar S, Eriksson PG (2008) Mg-rich ferric illite in marine transgressive and highstand systems tracts: examples from the Paleoproterozoic Semri Group, central India. Prec Res 162:212–226

    Article  Google Scholar 

  • Banerjee S, Chattoraj SL, Saraswati PK, Dasgupta S, Sarkar U (2012a) Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kachchh, India. Marine Petrol Geol 30:144–160

    Article  Google Scholar 

  • Banerjee S, Chattoraj SL, Saraswati PK, Dasgupta S, Sarkar U, Bumby A (2012b) The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kachchh, India. Geol J 47:357–371

    Article  Google Scholar 

  • Banerjee S, Bansal U, Thorat AV (2016) A review on paleogeographic implications and temporal variation in glaucony composition. J Paleogeography 5(1):43–71

    Article  Google Scholar 

  • Biswas SK (1982) Rift basins in western margin of India with special reference to hydrocarbon prospects. Bull Am Ass Pet Geol 66:1497–1513

    Google Scholar 

  • Biswas SK (1987) Regional tectonic framework, structure and evolution of the western marginal basins of India. Tectonophysics 135:307–327

    Article  Google Scholar 

  • Biswas SK (1992) Tertiary Stratigraphy of Kutch. J Paleont Soc India 37:1–29

    Google Scholar 

  • Biswas SK (2005) A review of structure and tectonics of Kachchh basin, western India, with special reference to earthquakes. Curr Sci 88:1592–1600

    Google Scholar 

  • Bohaty SM, Zachos JC, Florindo F, Delaney M (2009) Coupled greenhouse warming and deep-sea acidification in the Middle Eocene. Paleoceanography. doi:10.1029/2008PA001676

    Google Scholar 

  • Chafetz HS, Reid A (2000) Syndepositional shallow water precipitation of glauconitic minerals. Sed Geol 136:29–42

    Article  Google Scholar 

  • Chattopadhyay D, Sarkar D, Bardhan S, Mallick S, Das S (2011) A record of drilling predation and other biotic traces from larger benthic foraminifera of Eocene strata of Kachchh, Western India. Jahrestagung der Paläontologischen Gesellschaft, Abst 32:48p

    Google Scholar 

  • Chattoraj SL, Banerjee S, Saraswati PK (2009) Glauconites from the Late Paleocene—early Eocene Naredi Formation, Western Kachchh and their genetic implications. J Geol Soc India 73:567–574

    Article  Google Scholar 

  • Dasgupta S, Chaudhuri AK, Fukuoka M (1990) Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications. J Sediment Pet 60:277–281

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1. American Association of Petrol Geologists Memoir, pp 108–112

  • Edgar KM, Wilson PA, Sexton PF, Gibbs SJ, Roberts AP, Norris RD (2010) New biostratigraphic, magnetostratigraphic and isotopic insights into the Middle Eocene climatic optimum in low latitudes. Palaeogeog Palaeoclim Palaeoeco 297:670–682

    Article  Google Scholar 

  • El Albani A, Meunier A, Fursich F (2005) Unusual occurrence of glauconite in a shallow marine lagoonal environment. Terra Nova 17:537–544

    Article  Google Scholar 

  • Flügel E (2010) Microfacies of carbonate rocks-analysis, interpretation and application. Springer, Berlin, p 976

    Book  Google Scholar 

  • Garzanti E, Angiolini L, Brunton H, Sciunnach D, Balini M (1998) The Bashkirian “Fenestella Shales” and the Moscovian “Chaetetid Shales” of the Tethys Himalaya (South Tibet, Nepal and India). J Asian Earth Sci 16:119–141

    Article  Google Scholar 

  • Halder K (2012) Cenozoic fossil nautiloids (Cephalopoda) from Kachchh, western India. Palaeoworld 21(2):116–130

    Article  Google Scholar 

  • Halder K, Sinha P (2014) Some Eocene Cerithioids (Gastropoda, Mollusca) from Kachchh, Western India, and their bearing on palaeobiogeography of the Indian Subcontinent. Paleontology J dx. doi:10.1155/2014673469

    Google Scholar 

  • Huggett JM, Gale AS (1997) Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. J Geol Soc 154:897–912

    Article  Google Scholar 

  • Kachhara RP, Jodhawat RL, Bigyapati Devi K (2011) Molluscan biostratigraphy of the palaeogene sediments around Lakhpat, Kachchh, Gujarat, India. J Palaeont Soc India 56(1):17–28

    Google Scholar 

  • Kelly JC, Webb JA (1999) The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: petrographic and geochemical evidence. Sed Geol 125:99–114

    Article  Google Scholar 

  • Kelly JC, Webb JA, Maas R (2001) Isotopic constraints on the genesis and age of autochthonous glaucony in the Oligo Miocene Torquay Group, south-eastern Australia. Sedimentology 48:325–338

    Article  Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes, and benthic extinctions at the end of the Paleocene. Nature 353:225–229

    Article  Google Scholar 

  • Kidwell SM (1991) The stratigraphy of shell concentrations. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossils record. Plenum Press, New York, pp 115–209

    Chapter  Google Scholar 

  • Koshal VN (1984) Differentiation of Rhaetic sediments in the subsurface of Kachchh based on Palynofossils. Petrol Asia Jour 7:102–105

    Google Scholar 

  • Kumar P, Saraswati PK, Banerjee S (2009) Early Miocene shell concentration in the mixed carbonate siliciclastic system of Kutch and their distribution in sequence stratigraphic framework. J Geol Soc India 74:432–444

    Article  Google Scholar 

  • Lee CH, Choi S, Suh M (2002) High iron glaucony from the continental shelf of the Yellow Sea off the southwestern Korean Peninsula. J Asian Ear Sci 20:507–515

    Article  Google Scholar 

  • McRae SG (1972) Glauconite. Earth Sci Rev 8:397–440

    Article  Google Scholar 

  • Morton AC, Merriman RJ, Mitchell JG (1984) Genesis and significance of glauconitic sediments of the Southwest Rockall Plateau. Init Rep Deep Sea Drill Proj 81:645–652

    Google Scholar 

  • Norton IO, Sclater JG (1979) A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. J Geophys Res 84:6803–6830

    Article  Google Scholar 

  • Odin GS, Fullagar PD (1988) Geological significance of the glaucony facies. In: Odin GS (Ed) Green Marine clays: developments in sedimentology, vol 45. Elsevier, Amsterdam, pp 295–332

    Google Scholar 

  • Odin GS, Matter A (1981) De Glauconiarum Origine. Sedimentology 28:611–641

    Article  Google Scholar 

  • Patra A, Singh BP (2015) Facies characteristics and depositional environments of the Eocene strata of Jaisalmer basin, western India. Carb Evap 30:331–346

    Article  Google Scholar 

  • Rage JC, Bajpai S, Thewissen JGM, Tiwari BN (2003) Early Eocene snakes from Kachchh, western India, with a review of the Palaeophiidae. Geodiversitas 25(4):695–716

    Google Scholar 

  • Ravikant V, Bajpai S (2010) Strontium isotope evidence for the age of Eocene fossil whales of Kachchh, western India. Geol Magaz 147(3):473–477

    Article  Google Scholar 

  • Reading HG (1996) Sedimentary environments: processes. Blackwell Science, Facies and Stratigraphy, p 688p

    Google Scholar 

  • Reineck HE, Singh IB (1980) Depositional sedimentary environment. Springer-Verlag, New York, p 549

    Book  Google Scholar 

  • Samanta BK (1981) Two stratigraphically important Nummulites from the Middle Eocene of India and Europe. Palaeontology 24:803–826

    Google Scholar 

  • Samanta BK, Bandopadhyay KP, Lahiri A (1990) The occurrence of Nummulites Lamark (Foraminiferida) in the Middle Eocene Harudi Formation and Fulra Limestone of Kachchh, Gujarat, Western India. Bull Geol Min Metal Soc India 55:1–66

    Google Scholar 

  • Saraswati PK, Patra PK, Banerji RK (2000) Biometric study of some Eocene Nummulites and Assilina from Kachchh and Jaisalmer, India. J Palaeont Soc India 45:91–122

    Google Scholar 

  • Saraswati PK, Sarkar U, Banerjee S (2012) Nummulites solitarius—Nummulites burdigalensislineage in Kachchh with remarks on the age of Naredi Formation. J Geol Soc India 79(5):476–482

    Article  Google Scholar 

  • Saraswati PK, Khanolkar S, Raju DSN, Dutta S, Banerjee S (2014) Foraminiferal biostratigraphy of lignite mines of Kachchh, India: age of lignite and fossil vertebrates. J Palaeogeography 3(1):90–98

    Google Scholar 

  • Sengupta S, Nielsen JK (2009) Bioerosion in Middle Eocene larger foraminifera Nummulites obtusus (Sowerby) from Lakhpat, northwest Kachchh, Gujarat, India. Indian J Geosci 63:81–86

    Google Scholar 

  • Singh BP (2012) How deep was the early Himalayan foredeep? J Asian Ear Sci 56:24–32

    Article  Google Scholar 

  • Singh P, Singh MP (1991) Nannofloral biostratigraphy of the late Middle Eocene strata of Kachchh region, Gujarat State, India. Geosci J 12:17–51

    Google Scholar 

  • Singh BP, Neha Singh, Singh SP (2013) Modern salt (halite) deposits of the Sambhar Lake, Rajasthan and their formative conditions. Curr Sci 104(11):1482–1484

    Google Scholar 

  • Singh BP, Singh YR, Andotra DS, Patra A, Srivastava VK, Guruaribam V, Sijagurumayum U, Singh GP (2016) Tectonically driven late Paleocene (57.9–54.7 Ma) transgression and climatically forced latest middle Eocene (41. 3–38.0 Ma) regression on the Indian subcontinent. J Asian Ear Sci 115:124–132

    Article  Google Scholar 

  • Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damsté JS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K, Clemens S, Cronin T, Eynaud F, Gattacceca J, Martin Jakobsson M, Jordan R, Kaminski M, King J, Koc N, Martinez NC, Mcinroy D, Moore JRTC, O’Regan M, Onodera J, Pälike H, Rea B, Rio D, Sakamoto T, Smith DC, St. John KEK, Suto I, Suzuki N, Takahashi K, Watanabe M, Yamamoto M (2006) Sub-tropical Arctic Ocean temperatures during the Palaeocene-Eocene thermal maximum. Nature 441:610–613

    Article  Google Scholar 

  • Srivastava VK, Singh BP (2016) Facies analysis and depositional environments of the early Eocene Naredi Formation (Nareda locality), Kachchh, Western India. Carb Evap. doi:10.1007/s13146-016-0293-6

    Google Scholar 

  • Srivastava VK, Singh BP (2017) Shoreface to estuarine sedimentation in the late Paleocene Matanomadh Formation, Kachchh, Western India. J Asian Ear Sci 136:1–15

    Article  Google Scholar 

  • Srivastava DK, Gupta A, Jauhri AK (2008) A new regular echinoid from the middle Eocene of Kachchh. Western India. J Paleont Soc India 53(1):107–110

    Google Scholar 

  • Syed R, Sarkar S, Sengupta S (2015) New Evidences of Shell-gravel Taxa from Harudi Formation (Middle Eocene), Western Kachchh. J Geol Soc India 85:586–590

    Article  Google Scholar 

  • Tandon KK, Srivastava DK (1980) Hercoglossa Kachchhensis—a new species from the Middle Eocene rocks of Kachchh, India. J Palaeont Soc India 23–24:55–57

    Google Scholar 

  • Thomas E, Shackleton NJ, Thomas E, Shackleton NJ (1996) The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies. In: Knox RWOB, Corfield R, Dunay RE (eds) Correlation of the Early Paleogene in Northwest Europe Correlation of the Early Paleogene in Northwest Europe, Special Publication, vol 101. Geol Soc Washington DC, Washington, pp 401–441

    Google Scholar 

  • Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene Thermal Maximum. Geology 30:1067–1070

    Article  Google Scholar 

  • Tripati A, Elderfield H (2005) Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science 308:1894–1898

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin

    Book  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos JC, Wara MW, Bohaty S, Delaney ML, Petrizzo MR, Brill A, Bralower TJ, Premoli-Silva I (2003) A transient rise in tropical sea surface temperature during the Paleocene-Eocene Thermal Maximum. Science 302:551–1554

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Head, Department of Geology for providing working facilities. VKS is thankful to the Director, IIT-BHU for allowing him to carry out mineralogical, morphological and elemental investigations on Rigaku SmartLab XRD and ZEISS EVO 18 Research SEM machines respectively housed at the Central Instrumentation Facility Centre of the campus. VKS is grateful to the CSIR, New Delhi for the financial assistance in the form of Senior Research Fellowship {Grant No. 09/013(0548)/2014-EMR-I}. The help provided by Mr. P. K. Singh in the fieldwork is acknowledged. The critical comments by the journal reviewers helped in improving both quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V.K., Singh, B.P. & Kanhaiya, S. Facies characteristics and depositional environments of the middle Eocene (Lutetian) Harudi Formation, Kachchh, Western India. Carbonates Evaporites 34, 373–388 (2019). https://doi.org/10.1007/s13146-017-0398-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0398-6

Keywords

Navigation