Skip to main content
Log in

Trace and rare earth element geochemistry of Holocene hydromagnesite from Dujiali Lake, central Qinghai–Tibetan Plateau, China

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The genesis of hydromagnesite [Mg5(CO3)4(OH)2·4H2O] has attracted great interest as a pathway for sequestering anthropogenic CO2 and because of its importance to Mg carbonate depositional environments; however, there remain uncertainties regarding the chemical environment for hydromagnesite precipitation in modern and ancient geologic systems. Trace and rare earth element (REE) concentrations in hydromagnesite from Dujiali Lake, central Qinghai–Tibetan Plateau, China identified the formation conditions in the context of the depositional environment. The analyzed hydromagnesite samples had low total REE concentrations, varying from 0.62 to 3.11 ppm, with an average ∑REE value of 1.75 ppm. Comparisons of Ce/Ce* with LaN/SmN, DyN/SmN, and ∑REE showed no correlation indicating preservation of the original redox conditions during hydromagnesite precipitation. Redox-sensitive trace element ratios (U/Th, Ni/Co, V/Cr and V/V + Ni), negative Mn* values, and low authigenic uranium (Ua) values all indicate oxic conditions at the time of hydromagnesite formation. Furthermore, the Post-Archean Australian Shale-normalized REE patterns of the hydromagnesite display slight heavy REE enrichment, a slightly negative Ce anomaly, and a consistently positive Eu anomaly, which are consistent with precipitation in a predominantly oxidizing environment. Data indicate that hydromagnesite precipitated from waters influenced by both Mg-rich hydrothermal fluids and meteoric water with a similar composition to the lake water. This study provides new insights into the conditions of hydromagnesite formation at Dujiali Lake with implications for the understanding of the genesis of modern and ancient Mg carbonate deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar T, Shireen K, Bashir E, Nassem S (2009) Characteristics of ultramafic rocks and associated magnesite deposits, Nal Area, Khuzdar, Balochistan, Pakistan. J Geol Min Res 1:034–041

    Google Scholar 

  • Algeo TJ, Maynard JB (2004) Trace-element behaviour and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206(3–4):289–318

    Article  Google Scholar 

  • Barrat JA, Boulègue J, Tiercelin JJ, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochimica et Cosmochimica Acta 64(2):287–298

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79(1–2):37–55

    Article  Google Scholar 

  • Bau M, Möller P (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineral Petrol 45:231–246

    Article  Google Scholar 

  • Bellanca A, Claps M, Erba E, Masetti D, Neri R, Premoil Silva I, Venezia F (1996) Orbitally induced limestone/marlstone rhythms in the Albian–Cenomanian Cismon section (Venetian region, northern Italy): sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 126(3–4):227–260

    Article  Google Scholar 

  • Bian YY, Lin ZJ, Feng D, Chen DF (2012) Rare earth elements of seep carbonates and using them to trace redox variation at seep sites. J Trop Oceanogr 31(5):37–44 (in Chinese)

  • Birgel D, Feng D, Roberts HH, Peckmann J (2011) Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, Northern Gulf of Mexico. Chem Geol 285(1–4):82–96

    Article  Google Scholar 

  • Bonales LJ, Muñoz-Iglesias V, Santamaría-Pérez D, Caceres M, Fernandez-Remolar D, Prieto-Ballesteros O (2013) Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates. Spectrochim Acta Part A Mol Biomol Spectrosc 116:26–30

    Article  Google Scholar 

  • Braithwaite CJR, Zedef V (1994) Living hydromagnesite stromatolites from Turkey. Sediment Geol 92(1–2):1–5

    Article  Google Scholar 

  • Braithwaite CJR, Zedef V (1996) Hydromagnesite stromatolites, sediments in an alkaline lake, Salda Golü, Turkey. J Sediment Res 66(5):991–1002

    Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar Geol 113:67–88

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ Geol 91(1):36–47

    Article  Google Scholar 

  • Canaveras JC, Hoyos M, Sanchez-Moral S, Sanz-Rubio J, Bedoya J, Soler V, Groth I, Schumann L, Laiz L, Conzalez I, Saiz-Jimenez C (1999) Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrobiol J 16(1):9–25

    Article  Google Scholar 

  • Cangemi M, Censi P, Reimer A, D’Alessandro W, Hause-Reitner D, Madonia P, Oliveri Y, Pecoraino G, Reitner J (2016) Carbonate precipitation in the alkaline lake Specchio di Venere (Pantelleria Island, Italy) and the possible role of microbial mats. Appl Geochem 67:168–176

    Article  Google Scholar 

  • Chagas AAP, Webb GE, Burne RV, Southam G (2016) Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth Sci Rev 162:338–363

    Article  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327

    Article  Google Scholar 

  • Debruyne D, Hulsbosch N, Muchez P (2016) Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source–sink system. Ore Geol Rev 72(1):232–252

    Article  Google Scholar 

  • Ekambaram V, Brookins DG, Rosenberg PE, Emanuel KM (1986) Rare-earth element geochemistry of fluorite-carbonate deposits in western Montana, U.S.A. Chem Geol 54(3–4):319–331

    Article  Google Scholar 

  • Feng JL, Zhao ZH, Chen F, Hu HP (2014) Rare earth elements in sinters from the geothermal waters (hot springs) on the tibetan plateau, china. J Volcanol Geoth Res 287:1–11

    Article  Google Scholar 

  • Fischbeck R, Müller G (1971) Monohydrocalcite, hydromagnesite, nesquehonite, dolomite, aragonite, and calcite in speleothems of the Fränkische Schweiz, Western Germany. Contrib Miner Petrol 33:87–92

  • Franchi F, Hofmann A, Cavalazzi B, Wilson A, Barbieri R (2015) Differentiating marine vs hydrothermal processes in Devonian carbonate mounds using rare earth elements (Kess Kess mounds, Anti-Atlas, Morocco). Chem Geol 409:69–86

    Article  Google Scholar 

  • Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258(3–4):338–353

    Article  Google Scholar 

  • Ge L, Jiang SY, Swennen R, Yang T, Yang JH, Wu NY, Liu JA, Chen DH (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277(1–4):21–30

    Article  Google Scholar 

  • German CR, Elderfield H (1990) Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5(5):823–833

    Article  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Oxford Press, New York

    Google Scholar 

  • Green DI, Young B (2006) Hydromagnesite and dypingite from the northern Pennine Orefield, northern England. Proc Yorks Geol Soc 56(2):151–154

    Article  Google Scholar 

  • Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem Geol 99(1–3):65–82

    Article  Google Scholar 

  • Haurie L, Fernández AI, Velasco JI, Chimenos JM, Ticó-Grau JR, Espiell F (2005) Synthetic hydromagnesite as flame retardant. A study of the stearic coating process. Macromol Symp 221:165–174

    Article  Google Scholar 

  • Haurie L, Fernández AI, Velasco JI, Chimenos JP, Ticó-Grau JP, Espiell F (2006) Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stab 91(5):989–994

    Article  Google Scholar 

  • Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany). Chem Geol 155(1–2):115–130

    Article  Google Scholar 

  • Hill C, Forti P (1997) Cave minerals of the world, 2nd edn. National Speleological Society, Huntsville

    Google Scholar 

  • Himmler T, Bach W, Bohrmann G, Peckmann J (2010) Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis. Chem Geol 277(1–2):126–136

    Article  Google Scholar 

  • Hollingbery LA, Hull TR (2010) The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta 509(1–2):1–11

    Article  Google Scholar 

  • Hopkinson L, Kristova P, Rutt K, Cressey G (2012) Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta 76:1–13

    Article  Google Scholar 

  • Janet CM, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J Phys Chem C 111(28):10267–10272

    Article  Google Scholar 

  • Johnson CL, Hudson SM, Rowe HD, Efendiyeva MA (2010) Geochemical constraints on the Palaeocene-Miocene evolution of eastern Azerbaijan, with implications for the South Caspian Basin and eastern Paratethys. Basin Res 22:733–750

    Article  Google Scholar 

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111(1–4):111–129

    Article  Google Scholar 

  • Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525

    Article  Google Scholar 

  • Kamber BS, Webb GE, Gallagher M (2014) The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J Geol Soc 171:745–763

    Article  Google Scholar 

  • Kaźmierczak J, Altermann W, Kremer B, Kempe S, Eriksson PG (2009) Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambr Res 173(1–4):79–92

    Article  Google Scholar 

  • Khan KF, Dar SA, Khan SA (2012) Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India. J Rare Earths 30:507–514

  • Königsberger E, Königsberger L, Gamsjager H (1999) Low-temperature thermodynamic model for the system Na2CO3–MgCO3–CaCO3–H2O. Geochim Cosmochim Acta 63(19–20):3105–3119

    Article  Google Scholar 

  • Last FM, Last WM (2012) Lacustrine carbonates of the northern Great Plains of Canada. Sediment Geol 277–278:1–31

    Article  Google Scholar 

  • Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn–Pb massive sulphide deposits. Appl Geochem 15(6):695–723

    Article  Google Scholar 

  • Li R, Jones B (2014) Evaluation of carbonate diagenesis: a comparative study of minor elements, trace elements, and rare-earth elements (REE + Y) between Pleistocene corals and matrices from Grand Cayman, British West Indies. Sediment Geol 314:31–46

    Article  Google Scholar 

  • Lin Y, Zheng M, Ye C (2017) Hydromagnesite precipitation in the Alkaline Lake Dujiali, central Qinghai-Tibetan Plateau: constraints on hydromagnesite precipitation from hydrochemistry and stable isotopes. Appl Geochem 78:139–148

    Article  Google Scholar 

  • Liu YG, Miah MRU, Schmitt RA (1988) Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta 52(6):1361–1371

    Article  Google Scholar 

  • Loope GR, Kump LR, Arthur MA (2013) Shallow water redox conditions from the Permian-Triassic boundary microbialite: the rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chem Geol 351:195–208

    Article  Google Scholar 

  • Machhour L, Philip J, Oudin JL (1994) Formation of laminate deposits in anaerobic—dysaerobic marine environments. Mar Geol 117:287–302

    Article  Google Scholar 

  • Manthilake MAGM, Sawada Y, Sakai S (2008) Genesis and evolution of Eppawala carbonatites, Sri Lanka. J Asian Earth Sci 32(1):66–75

    Article  Google Scholar 

  • Martinez-Ruiz F, Ortega-Huertas M, Palomo I (2000) Positive Eu anomaly development during diagenesis of the K/T boundary ejecta layer in the Agost section (SE Spain): implications for trace-element remobilization. Terra Nova 11(6):290–296

    Article  Google Scholar 

  • McArthur JM, Walsh JN (1984) Rare-earth geochemistry of phosphorites. Chem Geol 47(3–4):91–220

    Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Rev Mineral Geochem 21:169–200

    Google Scholar 

  • Müller G, Irion G, Förstner U (1972) Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment. Sci Nat 59:158–164

    Article  Google Scholar 

  • Northup E, Kathleen H, Lavoie D (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222

    Article  Google Scholar 

  • O’Neil JR, Barnes I (1971) C13 and O18 compositions in some fresh-water carbonates associated with ultramafic rocks and serpentinites: western United States. Geochim Cosmochim Acta 35(7):687–697

    Article  Google Scholar 

  • Oskierski HC, Dlugogorski BZ, Jacobsen G (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef asbestos mine, Australia: quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol 358:156–169

    Article  Google Scholar 

  • Oskierski HC, Dlugogorski BZ, Oliver TK, Jacobsen G (2016) Chemical and isotopic signatures of waters associated with the carbonation of ultramafic mine tailings, Woodsreef Asbestos Mine, Australia. Chem Geol 436:11–23

    Article  Google Scholar 

  • Pan GT, Wang LQ, Li RQ, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14

    Article  Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (2009) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. Biol J Lin Soc 98(1):181–186

    Article  Google Scholar 

  • Power IM, Wilson SA, Thom JM, Dipple GM, Southam G (2007) Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochem Trans 8:229–247

    Article  Google Scholar 

  • Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: a biogeochemical model for CO2 sequestration. Chem Geol 260(3–4):286–300

    Article  Google Scholar 

  • Power IM, Wilson SA, Harrison AL, Dipple GM, McCutcheon J, Southam G, Kenward PA (2014) A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Sedimentology 61(6):1701–1733

    Article  Google Scholar 

  • Power IM, Harrison AL, Dipple GM (2016) Accelerating mineral carbonation using carbonic anhydrase. Environ Sci Technol 50(5):2610–2618

    Article  Google Scholar 

  • Rao TR, Chohan VS (1995) Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 18(5):359–363

    Article  Google Scholar 

  • Realinho V, Haurie L, Antunes M, Velasco JI (2014) Thermal stability and fire behaviour of flame retardant high density rigid foams based on hydromagnesite-filled polypropylene composites. Compos B Eng 58:553–558

    Article  Google Scholar 

  • Renaut RW, Long PR (1989) Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada. Sediment Geol 64(4):239–264

    Article  Google Scholar 

  • Sáez R, Moreno C, González F, Almodovar GR (2011) Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Miner Depos 46(5):585–614

    Article  Google Scholar 

  • Sarkar A, Sarangi S, Ebihara M, Bhattacharya SK, Ray AK (2003) Carbonate geochemistry across the Eocene/Oligocene boundary of Kutch, western India: implications to oceanic O2-poor condition and foraminiferal extinction. Chem Geol 201(3–4):281–293

    Article  Google Scholar 

  • Shi RD (2007) SHRIMP dating of the Bangong Lake SSZ-type ophiolite: constraints on the closure time of ocean in the Bangong Lake-Nujiang River, northwestern Tibet. Chin Sci Bull 52:936–941

    Article  Google Scholar 

  • Shi RD, Yang JS, Xu ZQ, Qi XX (2005) Recognition of MOR- and SSZ-type ophiolites in the Bangong Lake ophiolite mélange, western Tibet: evidence from two kinds of mantle peridotites. Acta Petrologica et Mineralogica 24: 397–408 (in Chinese)

  • Shields G, Stille P (2001) Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: anisotopic and REE study of Cambrian phosphorites. Chem Geol 175(1–2):29–48

    Article  Google Scholar 

  • Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta 58:1567–1579

  • Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67(1):70–78

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell Science, Oxford, pp 1–312

  • Tong W, Zhang MT, Zhang ZF (1981) Geothermics in Tibet. Science Press, Beijing, pp 1–170 (in Chinese)

    Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Trolle-Wachmeister HG (1827) Svenska Vetenskapsakademien, Stockholm, Handlingar: 18.von Kobell, Wolfgang Xavier Franz (1835) Journal für praktische Chemie, Leipzig 4:80

  • Wang SH, Yan W, Chen Z, Zhang N (2014) Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea. Mar Pet Geol 57:482–493

    Article  Google Scholar 

  • Wang SH, Magalhães VH, Pinheiro LM, Liu JL, Yan W (2015) Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes. Mar Pet Geol 68:192–205

    Article  Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64(9):1557–1565

    Article  Google Scholar 

  • Wedepohl KH (1978) Manganese: abundance in common sediments and sedimentary rocks. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin, pp 1–17

  • Wignall PB, Myers KJ (1988) Interpreting benthic oxygen levels in mudrocks: a new approach. Geology 16:452–455

    Article  Google Scholar 

  • Wilson SA, Dipple GM, Power IM, Thom JM, Anderson RG, Raudsepp M, Gabites JE, Southam G (2009) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Econ Geol 104(1):95–112

    Article  Google Scholar 

  • Wilson SA, Harrison AL, Dipple GM, Power IM, Barker SLL, Mayer KU, Fallon SJ, Raudsepp M, Southam G (2014) Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int J Greenh Gas Control 25:121–140

    Article  Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 88:99–125

    Article  Google Scholar 

  • Wright J, Seymour RS, Shaw HF (1984) REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. Spec Pap Geol Soc Am 196:325–340

    Google Scholar 

  • Wright J, Schrader H, Holser WT (1987) Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta 51(3):631–644

    Article  Google Scholar 

  • Yan RE, Xia ZK (1987) Hydromagnesite and Late Pleistocene Environment in Datong Basin, Shanxi Province. Acta Scicentiarum Nat Univ Pekin 2:98–110 (in Chinese)

    Google Scholar 

  • Yang XP, Zhu BQ, White PD (2007) Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data. Quat Int 175(1):71–85

    Article  Google Scholar 

  • Yi HS, Lin JH, Zhao XX, Zhou KK, Li JP, Huang HG (2008) Geochemistry of rare earth elements and origin of positive europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe basin of Tibetan plateau. Acta Sedimentol Sin 26:1–10 (in Chinese)

    Google Scholar 

  • Yu JJ, Zheng MP, Wu Q, Wang YS, Nie Z, Bu LZ (2015) Natural evaporation and crystallization of Dujiali salt lake water in Tibet. Chem Ind Eng Process 34:4172–4178 (in Chinese)

    Google Scholar 

  • Yutaka S, Keizo U, Nobuyasu M, Masanori K (1978) Thermal decomposition of hydromagnesite 4MgCO3·Mg(OH)2·4H2O. J Inorg Nucl Chem 40(1–3):979–982

    Google Scholar 

  • Zedef V, Russell M (2016) Rare earth element content of cryptocrystalline magnesites of Konya, Turkey. In: AIP conference proceedings, vol 1726, no 1. doi:10.1063/1.4945942

  • Zedef V, Russell MJ, Fallick AE, Hall AJ (2000) Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: a stable isotope study. Econ Geol 95(2):131–134

    Article  Google Scholar 

  • Zhao YY, Nie FJ, Hou ZQ, Li ZQ, Zhao XT, Ma ZB (2007) Geochemistry of Targejia hot spring type cesium deposit in Tibet. Miner Depos 26:163–174 (in Chinese)

    Google Scholar 

  • Zhao YY, Zheng YF, Chen F (2009) Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China. Chem Geol 265(3–4):345–362

    Article  Google Scholar 

  • Zhao YY, Cui YB, Zhao XT (2010) Geological and geochemical features and significance of travertine in travertine-island from Zhabuye salt lake, Tibet, China. Geol Bull China 29(1):124–141 (in Chinese)

    Google Scholar 

  • Zheng MP (1997) An introduction to Saline Lakes on the Qinghai-Tibet Plateau. Springer, Dordrecht, pp 1–294

    Google Scholar 

  • Zheng MP, Xiang J, Wei XJ (1989) Saline Lake on the Qinghai-Xizang (Tibet) Plateau. Science Press, Beijing, pp 1–431 (in Chinese)

    Google Scholar 

  • Zheng XY, Zhang MG, Dong JH, Gao ZH, Xu C, Han ZM, Zhang BZ, Sun DP, Wang KJ (1995) Salt Lakes in Inner Mongolia. Science Press, Beijing, pp 196−218, 229−247 (in Chinese)

  • Zheng XY, Zhang MG, Xu X, Li BX (2002) Saline lakes of China. Science Press, Beijing, pp 49–51 (in Chinese)

Download references

Acknowledgements

The authors would like to thank Dr. Andong Chen for assistance with sample preparation, and Yanhui Zhang, Liangsheng Zhang, and Chenguang Xia for their help analyzing the major and trace elements. Special thanks to the anonymous reviewer whose insightful comments led to the improvement of our manuscript. This research was supported by Joint Funds of National Natural Science Foundation of China and the People’s Government of Qinghai Province (Grant number: U1407207), National Natural Science Foundation of China (Grant number: 41603048), and Projects of China Geological Survey (Grant number: DD20160025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mianping Zheng or Chuanyong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zheng, M., Ye, C. et al. Trace and rare earth element geochemistry of Holocene hydromagnesite from Dujiali Lake, central Qinghai–Tibetan Plateau, China. Carbonates Evaporites 34, 1265–1279 (2019). https://doi.org/10.1007/s13146-017-0395-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0395-9

Keywords

Navigation