Skip to main content

Advertisement

Log in

A model of basin evolution in the Qa’ Al-Azraq, Jordan using sulfur isotope analysis to distinguish sources of sulfur and gypsum

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The closed basin of the Qa’ Al-Azraq, Jordan records gypsum and sulfur depositions. Analysis of the cored sediments used smear slides, isotope geochemistry of gypsum and sulfur, XRD, and SEM. This study distinguishes the sources of gypsum and sulfur in the basin from four different processes. Algae production was responsible for the presence of laminated sulfur at a depth of 48 m where paleolake levels were at a high stand. Primary gypsum, represented by laminated, thick massive beds, records sulfur isotope values of +15.7‰. This period of the paleolake indicates evaporation processes exceeded precipitation, leading to the deposition of thick, massive bed of gypsum. Other sources of gypsum originate from pyrite oxidation, indicated by the overlapping of sulfur isotope values of gypsum and pyrite at −0.7‰. Bassanite and anhydrite identified in this section resulted from dissolution and recrystallization processes. The application of sulfur isotopic analyses identifies environmental distinct formation processes of sulfate minerals in the Al-Azraq basin. This provides the basis for a model of basin evolution and associated changing climates. Finally, this research considers the effect of sulfate minerals on Al-Azraq basin groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad K (2010) Organic geochemistry of Al-Azraq Basin, Jordan, an interpretation of paleoenvironments and paleoclimate using bulk organic matter. Master Thesis. University of Missouri Kansas-City

  • Ahmad K, Davies C (2017) Stable isotope (δ13C and δ15N) based interpretation of organic matter source and paleoenvironmental conditions in Al-Azraq basin, Jordan. Appl Geochem 78:49–60

    Article  Google Scholar 

  • Albert DB, Taylor CD, Martens CS (1995) Sulfate reduction rates and low molecular weight fatty acid concentrations in the water column and surficial sediments of the Black Sea. Deep-Sea Res 42:1239–1260

    Article  Google Scholar 

  • Alcolombri U, Ben-Dor S, Feldmesser E, Levin Y, Tawfik D, Vardi A (2015) Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle. Science 6242:1466–1469

    Article  Google Scholar 

  • Alonso-Zara AM, Tanner LH (2010) Carbonates in continental settings: geochemistry, diagenesis and applications. In: van Loon AJ (ed) Developments in sedimentology, vol 62. Elsevier, Amsterdam, pp 67–71

    Google Scholar 

  • Alpers CN, Rye RO, Nordstrom DK, White LD, King L (1992) Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid hypersaline Australian lakes. Chem Geol 96:203–226

    Article  Google Scholar 

  • Al-Rawi Y, Jassim R, Habib H (2011) Sedimentary facies and environments of Shari Playa, Central Iraq. Iraqi Bull Geol Min 7:55–64

    Google Scholar 

  • Balci N, Shanks WC III, Mayer B, Mandernack KW (2007) Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta 71:3796–3811

    Article  Google Scholar 

  • Balci N, Mayer B, Shanks WC III, Mandernack KW (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta 77:335–351

    Article  Google Scholar 

  • Begin ZB, Ehrlich A, Nathan Y (1974) Lake Lisan: the Pleistocene precursor of the Dead Sea. Geol Surv Israel Bull 63:1–30

    Google Scholar 

  • Bender F (1974) Geology of Jordan. Gebruder Borntraeger, Berlin, p 195

    Google Scholar 

  • Benison C, Bowen B (2013) Extreme sulfur-cycling in acid brine lake environments of Western Australia. Chem Geol 351:154–167

    Article  Google Scholar 

  • Bowen B, Benison KC (2009) Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Appl Geochem 24:268–284

    Article  Google Scholar 

  • Breemen NV, Buurman P (1998) Soil formation. Kluwer Academic Publisher, Dordrecht, pp 1–377

    Book  Google Scholar 

  • Caroca NF, Cole JJ, Likens GE (1993) Sulfate control of phosphorus availability in lakes. Hydrobiologia 253:275–280

    Article  Google Scholar 

  • Chivas AR, Andrew A, Lyons WB, Bird MJ, Donnelly TH (1991) Isotopic Constraints on the origin of salts in Australian playas. I. Sulfur. Palaeogeogr Palaeoclimatol Palaeoecol 84:309–332

    Article  Google Scholar 

  • Cohen AS (2003) Paleolimnology: the history and evolution of Lake systems. Oxford University Press, Oxford, pp 1–528

    Google Scholar 

  • David MB, Mitchell MJ (1985) Sulfur constituents and cycling in waters, seston and sediments of an oligotrophic lake. Limnol Oceanogr 30:1196–1207

    Article  Google Scholar 

  • Davies C (2005) Past environments of the Jordan Plateau from the paleolakes of the Eastern Desert. In: Levy TE, Daviau PMM, Younker RW, Shaer M (eds) Crossing Jordan—North American contributions to the archaeology of Jordan. Equinox Publishing Ltd, Sheffield, pp 79–86

    Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice Hall, Englewood Cliffs, p 437

    Google Scholar 

  • Eckardt FD, Spiro B (1999) The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia. Sed Geol 123:255–273

    Article  Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes chemistry, geology, physics. Springer, New York, p 363

    Google Scholar 

  • Fleet AJ, Kelts K, Talbot M (1988) Lacustrine petroleum source rocks. Geological Society Special Publication No. 40:1–391

  • Gilhooly WP, Fike DA, Druschel GK, Kafantaris FA, Price RE, Amend JP (2014) Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Geochem Trans 15:12

    Article  Google Scholar 

  • Gindre-Chanu L, Perri E, Sharp I, Peacock DCP, Swart R, Poulsen R, Ferreira H, Machando V (2016) Origin and diagenetic evolution of gypsum and microbialitic carbonates in the Late Sag of the Namibe Basin (SW Angola). Sed Geol 342:133–153

    Article  Google Scholar 

  • Gleisner M, Herbert RB Jr, Frogner Kockum PC (2006) Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem Geol 225:16–29

    Article  Google Scholar 

  • Gustavson TC, Holliday VT, Hovorka SD (1995) Origin and development of Playa Basin, sources of recharge to the Ogallala Aquifer, southern high plain, Texas and New Mexico. Bureau of Economic Geology Report of Investigation 229, The University of Texas Austin, pp 1–44

  • Henneke E, Luther GW, De Lange GJ, Hoefs J (1997) Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochim Cosmochim Acta 61:307–321

    Article  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451

    Article  Google Scholar 

  • Hydrotechnik A, GTZ (1977) National water master plan of Jordan, v. 8, Essen, Hanover

  • Kiene R, Oremland R, Catena A, Miller L, Capone D (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52:1037

    Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment. In: The terrestrial environment, a volume in handbook of environmental isotope geochemistry, Chapter 11. Elsevier Science, Amsterdam, pp 435-471

  • Krouse HR, Grinenko VA (1991) Stable isotopes: natural and anthropogenic sulphur in the environment. Wiley, Chichester, pp 1–26

    Google Scholar 

  • Lomans BP, Op den Camp HJM, Pol A, Vogels GD (1999a) The role of methanogens and other bacteria in the degradation of dimethyl sulfide and methanethiol in anoxic fresh water sediments. Appl Environ Microbiol 65:2116–2136

    Google Scholar 

  • Lomans P, Maas R, Luderer R, den Op J, Pol A, Van der C, Vogels D (1999b) Isolation and characterization of Methano-methylovorans hollandica gen. nov., sp.nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65:3641–3650

    Google Scholar 

  • Lyons TW, Berner RA (1992) Carbon–sulfur–iron systematics of the uppermost deep-water sediments of the Black Sea. Chem Geol 99:1–27

    Article  Google Scholar 

  • Mandeville CW (2010) Sulfur: a ubiquitous and useful tracer in Earth and planetary sciences. Elements 6:675–680

    Article  Google Scholar 

  • McArthur JM, Turner JV, Lyons WB, Thirlwall MF (1989) Salt sources and water rock interaction on the Yilgarn Block, Australia: isotopic and major element tracers. Appl Geochem 4:79–92

    Article  Google Scholar 

  • McArthur JM, Turner JV, Lyons WB, Osborn AO, Thirlwall MF (1991) Hydrochemistry on the Yilgarn Block, Western Australia: ferrolysis and mineralization in acidic brines. Geochim Cosmochim Acta 55:1273–1288

    Article  Google Scholar 

  • Mees F, Casteneda C, Herrero J, Van Ranst E (2012) The nature and significance of variations in gypsum crystal morphology in dry lake basins. J Sediment Res 82:41–56

    Article  Google Scholar 

  • Metzger G, Fike D, Osburn G, Guo C, Addison A (2015) The source of gypsum in Mammoth Cave, Kentucky. Geology 43:187–190

    Article  Google Scholar 

  • Mossmann J, Aplin A, Curtis C, Coleman M (1991) Geochemistry of inorganic and organic sulfur in organic-rich sediments from the Peru Margin. Geochim Cosmochim Acta 55:3581–3595

    Article  Google Scholar 

  • Naqa A (2010) Study of salt water intrusion in the upper aquifer in Azraq Basin. Jordan, Final Report IUCN, p 92

    Google Scholar 

  • North Jordan Water Resources Investigation Project (NJWRIP) (1989) Azraq Basin water resources study, final report. Water Resources Department, Water Authority, Jordan pp. 37

  • Paytan A, Gray E, Ma Z, Erhardt A, Faul K (2011) Application of sulphur isotopes for stratigraphic correlation. Isotopes Environ Health Stud 48:195–206

    Article  Google Scholar 

  • Powell JH (1989) Stratigraphy and sedimentation of the Phanerozoic rocks in central and south Jordan: Part B- Kurnub, Aljun and Belqa groups. Natural Resources Authority, Geological Mapping Division, Bulletin 11B pp 130

  • Renaut RW, Last WM (eds.) (1994) Sedimentology and geochemistry of modern and ancient Saline Lakes. SEPM Special Publication, Tulsa 50:1-334

  • Ryu J, Zierenberg R, Dahlgren R, Gao S (2006) Sulfur biogeochemistry and isotopic fractionation in shallow groundwater and sediments of Owens Dry Lake, California. Chem Geol 229:257–272

    Article  Google Scholar 

  • Sela-Adler M, Said-Ahmad W, Sivan O, Eckert W, Kiene R, Amrani A (2015) Isotopic Evidence for the origin of DMS and DMSP-like compounds in a warm-monomictic freshwater lake. Environ Chem 13:340–351

    Article  Google Scholar 

  • Smoot JP, Lowenstein TK (1991) Chapter 3 Depositional environments of non-marine evaporites. Dev Sedimentol Evaporites Pet Miner Resour 50:189–347

    Article  Google Scholar 

  • Stein M, Starinsky A, Katz A, Goldstein SL, Machlus M, Schramm A (1997) Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochim Cosmochim Acta 61:3975–3992

    Article  Google Scholar 

  • Sternbeck J, Sohlenius G (1997) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chem Geol 135:55–73

    Article  Google Scholar 

  • Táany R, Masalha L, Khresat S, Ammari T, Tahboub A (2014) Climate change adaptation: a case study in Azraq Basin, Jordan. Int J Curr Microbiol Appl Sci 3:108–122

    Google Scholar 

  • Tan H, Ma H, Wei H, Xu J, Li T (2006) Chlorine, sulfur and oxygen isotopic constraints on ancient evaporate deposition in the Western Tarim Basin, China. Geochem J 40:569–577

    Article  Google Scholar 

  • Torfstein A, Gavrieli I, Katz A, Kolodny Y, Stein M (2008) Gypsum as a monitor of the pale-olimnological–hydrological conditions in Lake Lisan and the Dead Sea. Geochim Cosmochim Acta 72:2491–2509

    Article  Google Scholar 

  • Torfstein A, Gavrieli I, Stein M (2005) The sources and evolution of sulfur in the saline Lake Lisan (paleo-Dead Sea). Earth Planet Sci Lett 236:61–77

    Article  Google Scholar 

  • van Driessche AE, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bots P, Garcia-Ruiz JM (2012) The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336:69–72

    Article  Google Scholar 

  • van Leerdam RC, De Bok FA, Lomans BP, Stams AJ, Lens PN, Janssen AJ (2006) Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity. Environ Toxicol Chem 25:3101

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic, San Diego

    Google Scholar 

  • Wood WW (2000) Ground-water recharge in the Southern High Plains of Texas and New Mexico. U.S. Geological Survey Fact Sheet 127:99

  • Yongjian H, Yang G, Jian G, Pingkang W, Qinghua H, Zihui F, Lianjun F (2013) Marine incursion events in the Late Cretaceous Songliao Basin: constraints from sulfur geochemistry records. Palaeogeogr Palaeoclimatol Palaeoecol 385:152–161

    Article  Google Scholar 

  • Yucel-Sanliyuksel Balci, Baba A (2016) Generation of acid mine lakes associated with abandoned coal mines in Northwest Turkey. Arch Environ Contam Toxicol 70:757–782

    Article  Google Scholar 

Download references

Acknowledgements

Our sincere gratitude to the National Resources Authority of Jordan for providing drilling equipment and crews. Their continued support and cooperation is deeply appreciated. We thank the staff of the American Center of Oriental Research ACOR, Amman, Jordan who provided assistance while working in the Al-Azraq Basin. The authors thank Dr. Adina Paytan, University of California Santa Cruz and Dr. Louis Gonzales, University of Kansas for all their support and assistance in offering laboratory access for the geochemistry analyses. The authors also thank reviewers for their valuable contributions.

Funding

This work was supported by a research fellowship from the American Center of Oriental Research, Amman, Jordan, a grant from the University of Missouri Research Board, and material support from the Natural Resources Authority, Amman, Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Davies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Davies, C. A model of basin evolution in the Qa’ Al-Azraq, Jordan using sulfur isotope analysis to distinguish sources of sulfur and gypsum. Carbonates Evaporites 33, 535–546 (2018). https://doi.org/10.1007/s13146-017-0381-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0381-2

Keywords

Navigation