Skip to main content
Log in

Quantitative interpretation of carbonate reservoir rock using wireline logs: a case study from Central Luconia, offshore Sarawak, Malaysia

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The current study focuses on the quantitative evaluation of petrophysical parameters of selected wells using wireline log data in Central Luconia, offshore Sarawak. Based on the relatively high resistivity and, low-neutron/-density log responses, three major zones are identified. These include gas-bearing zones (Zone-1 and Zone-3) and mixed zone (Zone-2). The gamma ray, neutron and density logs confirmed that Well A was composed of carbonate rocks ranging from limestone to dolomite. Zone-1 and Zone-3 consist of limestone, whereas Zone-2 contains dolomite. The average porosity of these zones (Zone-1, Zone-2 and Zone-3) are 15.7, 4.3 and 13.7%, whereas gas saturation is 83, 41 and 93%, respectively. The permeability values are 543 mD (Zone-1), 47.7 mD (Zone-2) and 601.5 mD (Zone-3). The water saturation value in Zone-2 is very high, up to 66% compared to Zone-1 and Zone-3 which are 17 and 7%, respectively. It is pertinent to mention that Zone-1 and Zone-3 contain movable gas (i.e., HC movability index is less than 0.7). Furthermore, bulk volume water values in three zones (0.012, 0.0083 and 0.009) indicate the presence of irreducible water. In contrast, pore-filled dolomite cement is mostly from Zone-2, indicating high water, low gas saturation, low porosity and less movability index values, which indicate the presence of high microporosity. Additionally, bulk volume water suggests that these micropores are saturated with irreducible water. High microporosity affects the wireline log response in Zone-2 and therefore provides misleading information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(I_{\text{GR}}\) :

Index gamma ray

\(P_{\text{b}}\) :

Formation bulk density

\(\varPhi_{\text{ND}}\) :

Neutron–density porosity

\(S_{\text{w}}\) :

Water saturation

\(R_{\text{w}}\) :

Resistivity of formation water

\(R_{\text{xo }}\) :

Shallow resistivity

\(a\) :

Tortuosity factor

\(V_{\text{Shale}}\) :

Volume of shale

\(P_{\text{ft}}\) :

Fluid density

\(\varPhi_{{{\text{Ncorrected}}}}\) :

Corrected neutron porosity

\(S_{\text{xo}}\) :

Water saturation of flushed zone

\(R_{\text{t }}\) :

True formation resistivity

\({\text{BVW}}\) :

Bulk volume water

\(m\) :

Cementation exponent

\(P_{\text{ma}}\) :

Apparent matrix density

\(\varPhi_{\text{D}}\) :

Density porosity

\(\varPhi_{\text{Dcorrected}}\) :

Corrected density porosity

\(S_{\text{h}}\) :

Hydrocarbon saturation

\(R_{\text{mf }}\) :

Resistivity of mud filtrate

\(K\) :

Permeability

\(n\) :

Saturation exponent

References

  • Ajisafe Y, Ako B (2013) 3-D seismic attributes for reservoir characterization of “Y” field Niger Delta, Nigeria. IOSR J Appl Geol Geophs 1(2):23–31

    Article  Google Scholar 

  • Alam M, Alam MM, Curray JR, Chowdhury MLR, Gani MR (2003) An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sed Geol 155(3):179–208

    Article  Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Article  Google Scholar 

  • Asquith GB, Krygowski D, Gibson CR (2004) Basic well log analysis. American Association of Petroleum Geologists, Tulsa

    Google Scholar 

  • Atlas D (1979) Log interpretation charts. Dresser Industries Inc, Houston

    Google Scholar 

  • Bateman R, Konen C (1978) The log analyst and the programmable pocket calculator. Log Anal 19(04)

  • Doust H (1981) Geology and exploration history of offshore central Sarawak

  • Doveton JH, Guy W, Watney WL, Bohling GC, Ullah S, Adkins-Heljeson D (1996) Log analysis of petrofacies and flow-units with microcomputer spreadsheet software

  • Enikanselu A, Ojo A (2012) Statistical analysis and evaluation of lithofacies from wireline logs over Beleema field, Niger Delta, Nigeria. J Pet Gas Eng 3:26–34

    Google Scholar 

  • Epting M (1980) Sedimentology of Miocene carbonate buildups, central Luconia, offshore Sarawak. Bull Geol Soc Malays 12:17–30

    Google Scholar 

  • Epting M (1989) Miocene carbonate buildups of central Luconia, offshore Sarawak. Atlas Seism Stratigr 27:168–173

    Google Scholar 

  • Fyhn MB, Boldreel LO, Nielsen LH, Giang TC, Nga LH, Hong NT, Nguyen ND, Abatzis I (2013) Carbonate platform growth and demise offshore Central Vietnam: effects of early Miocene transgression and subsequent onshore uplift. J Asian Earth Sci 76:152–168

    Article  Google Scholar 

  • Gardner JS, Dumanoir J (1980) Litho-density log interpretation. In: SPWLA 21st annual logging symposium. Society of Petrophysicists and Well-Log Analysts

  • Hageman H (1987) Palaeobathymetrical changes in Nw Sarawak during Oligocene to Pliocene. Geol Soc Malays Bull 21:91–102

    Google Scholar 

  • Harrison B, Jing X (2001) Saturation height methods and their impact on volumetric hydrocarbon in place estimates. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers

  • Heidari Z, Hamman J, Day P, Gorney D, Alfred D (2011) Assessment of movable gas saturation and rock typing based on the combined simulation of petrophysical borehole measurements. In: SPWLA 52nd annual logging symposium. Society of Petrophysicists and Well-Log Analysts

  • Hilchie D (1978) Applied openhole log interpretation. Dw Hilchie, Inc, Golden

    Google Scholar 

  • Ho KF (1978) Stratigraphic framework for oil exploration in sarawak. Geol Soc Malays Bull 10:1–13

    Google Scholar 

  • Horst G, Creager L (1974) Progress report on the interpretation of the dual laterolog-Rxo Tool in the Permian basin. In: SPWLA 15th annual logging symposium. Society of Petrophysicists and Well-Log Analysts

  • Islam ARMT, Islam MA (2014) Evaluation of gas reservoir of the Meghna gas field, Bangladesh using wireline log interpretation. Univers J Geosci 2(2):62–69

    Google Scholar 

  • Islam M, Islam M, Talukder S, Haque K, Rahman M, Ahmed F (2009) Petrophysical evaluation of Neogene Shaly-sand gas reservoir: a case study of Kailas Tila Gas Field; Bengal Basin, Bangladesh. Int J Earth Sci Eng 2:499–511

    Google Scholar 

  • Janjuhah HT, Salim AMA, Ghosh DP (2017a) Sedimentology and reservoir geometry of the Miocene Carbonate deposits in Central Luconia, offshore, Sarawak, Malaysia. J Appl Sci 17(4):153–170

    Article  Google Scholar 

  • Janjuhah HT, Salim AMA, Ghosh DP, Wahid A (2017b) Diagenetic process and their effect on reservoir quality in Miocene Carbonate reservoir, offshore, Sarawak, Malaysia. In: Icipeg 2016. Springer, pp 545–558

  • Jenkins CD, Boyer CM (2008) Coalbed-and shale-gas reservoirs. J Pet Technol 60(02):92–99

    Article  Google Scholar 

  • Kieke E, Hartmann D (1974) Detecting microporosity to improve formation evaluation. J Pet Technol 26(10):1080–1086

    Article  Google Scholar 

  • Koša E (2015) Sea-level changes, shoreline journeys, and the seismic stratigraphy of Central Luconia, Miocene-Present, offshore Sarawak, Nw Borneo. Mar Pet Geol 59:35–55

    Article  Google Scholar 

  • Lee M, Collett T (2009) Gas hydrate saturations estimated from fractured reservoir at site Nghp-01-10, Krishna-Godavari basin, India. J Geophys Res 114(B7):B07102

    Article  Google Scholar 

  • Liechti P, Roe FW, Haile NS, Maatschappij KNP (1960) The geology of Sarawak, Brunei and the western part of North Borneo

  • Madon MBH (1999) Basin types, tectono-stratigraphic provinces and structural styles. The petroleum geology and resources of Malaysia, pp 77–112

  • Madon M, Kim CL, Wong R (2013) The structure and stratigraphy of deepwater Sarawak, Malaysia: implications for tectonic evolution. J Asian Earth Sci 76:312–333

    Article  Google Scholar 

  • Mat-Zin I, Swarbrick R (1997) The tectonic evolution and associated sedimentation history of Sarawak Basin, eastern Malaysia: a guide for future hydrocarbon exploration. Geol Soc Lond Spec Publ 126(1):237–245

    Article  Google Scholar 

  • Mat-Zin I, Tucker M (1999) An alternative stratigraphic scheme for the Sarawak Basin. J Asian Earth Sci 17(1):215–232

    Article  Google Scholar 

  • Mustafa S (2012) Basic well log interpretation. Focus Energy Ltd

  • Rahman MH, Pierson BJ, Yusoff W, Ismail W (2011) Classification of microporosity in carbonates: examples from Miocene Carbonate reservoirs of Central Luconia, Offshore Sarawak, Malaysia. In: International petroleum technology conference

  • Ruhovets V (1990) A log analysis technique for evaluating laminated reservoirs in the Gulf Coast area. Log Anal 31(05):294

    Google Scholar 

  • Schlumbrger (1975) A guide to wellsite interpretation of the Gulf Coasts. Schlumberger Well Services, Inc, Houston

  • Serra O (2007) Well logging and reservoir evaluation. Technip Ophrys Editions

  • Tiab D, Donaldson EC (2015) Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Gulf Professional Publishing, Elsevier

  • Vahrenkamp V (1998) Miocene carbonates of Luconia Province, offshore Sarawak: implication for regional geology and reservoir properties from strontium isotope stratigraphy. American Association of Petroleum Geologists

  • Vahrenkamp VC, David F, Duijndam P, Newall M, Crevello P (2004) Growth architecture, faulting, and karstification of a middle Miocene carbonate platform, Luconia Province, Offshore Sarawak, Malaysia

  • van Vliet A, Krebs W (2009) The Middle Miocene Unconformity (Mmu) in North Luconia, Deepwater Sarawak: how unconformable is the unconformity. Warta Geologi 35:131–133

    Google Scholar 

  • Wyllie M, Rose WD (1950) Some theoretical considerations related to the quantitative evaluation of the physical characteristics of reservoir rock from electrical log data. J Petrol Technol 2(04):105–118

    Article  Google Scholar 

  • Xue ZA, Wu YP (2014) Well-log evaluation of vuggy carbonate reservoir in Middle East. In: Applied mechanics and materials. Trans Tech Publ, pp 1302–1305

  • Zhang J, Standifird W, Roegiers J-C, Zhang Y (2007) Stress-dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications. Rock Mech Rock Eng 40(1):3–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hammad Tariq Janjuhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjuhah, H.T., Salim, A.M.A., Shah, M.M. et al. Quantitative interpretation of carbonate reservoir rock using wireline logs: a case study from Central Luconia, offshore Sarawak, Malaysia. Carbonates Evaporites 32, 591–607 (2017). https://doi.org/10.1007/s13146-017-0361-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0361-6

Keywords

Navigation