Skip to main content
Log in

Genesis of Paleocene and Lower Eocene shallow-water nodular limestone of South Tibet (China)

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

This paper examines the genesis of the Paleocene to Lower Eocene shallow-water nodular limestones in South Tibet. The negative carbon isotope excursion representative for the Paleocene–Eocene boundary is located in one nodular limestone bed of the Zhepure Shan Formation showing an extraordinary thickness of about 9 m, inspiring the question under which conditions these nodular limestones were formed. Based on field appearance, the shallow-water nodular limestones of Tingri and Gamba can be classified into five nodular limestone categories (Stylonodular Rock I, Nodular Rock I, Nodular Rock II, stylobedded rock and stylomottled rock) and some transitional members (stylobedded rock transitional to Stylobedded Rock II). Clay variations are assumed to be responsible for these various types of nodular limestones within the sediments. Observations of nodular limestones in South Tibet suggest that those sediments were mostly formed due to autochthonous rather than allochthonous processes. Differential diagenesis resulted in an early selective cementation of limestone nodules due to carbonate supply, while the marls were not cemented but provide the carbonate for the nodule cementation. Additionally, cemented and carbonate-rich nodules are resistant to chemical compaction, while the uncemented and clay-rich marl layers are affected by pressure solution processes due to an overburden of sediments. Additionally, a model is presented, illustrating the origin of different nodular limestones described here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed MA, Schneider W (1980) A general aspect in the genesis of nodular limestones documented by the Upper Cretaceous limestones of Jordan. Sediment Geol 26:329–355

    Article  Google Scholar 

  • Aubry MP, Ouda K (2003) Introduction to the Upper Paleocene-Lower Eocene of the Upper Nule valley. Micropaleontology 49:2–4

    Article  Google Scholar 

  • Bádenas B, Aurell M (2010) Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain). Facies 56:59–110

    Article  Google Scholar 

  • Bains S, Corfield RM, Norris RD (1999) Mechanisms of climate warming at the end of the Paleocene. Science 285:724–727

    Article  Google Scholar 

  • Banerjee S, Jeevankumar S (2007) Facies and depositional sequence of the Mesoproterozoic Rothas Limestone: Eastern Son valley, Vindhyan basin. J Asian Earth Sci 30:82–92

    Article  Google Scholar 

  • Banerjee S, Jeevankumar S, Sanyal P, Bhattacharyya SK (2006) Stable isotope ratios and nodular limestone of the Proterozoic Rohtas limestone: Vindhyan Basin, India. Carbonates Evaporites 21:133–143

    Article  Google Scholar 

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Developments in Sedimentology 12. Elsevier, Amsterdam

    Google Scholar 

  • Bathurst RGC (1987) Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction. Sedimentol 34:749–778

    Article  Google Scholar 

  • Bathurst RGC (1991) Pressure-dissolution and limestone bedding: the influence of stratified cementation. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratification. Springer, pp 451–463

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Sci Rev 67:219–265

    Article  Google Scholar 

  • Bernoulli D, Jenkyns HC (1970) A Jurassic Basin: the Glasenbach Gorge, Salzburg, Austria. Verh Geol B-A 1970:504–531

    Google Scholar 

  • Bjorlykke K (1973) Origin of limestone nodules in the Lower Paleozoic of the Oslo Region. Norsk geol Tidsskr 53:419–431

    Google Scholar 

  • Bjorlykke K (1974) Geochemical and mineralogical influence of Ordovician Island Arcs on epicontinental clastic sedimentation. A study Lower Palaeozoic sedimentation in the Oslo Region, Norway. Sedimentol 21:251–272

    Article  Google Scholar 

  • Boggs SJ (2009) Petrology of sedimentary rocks, 2nd edn. Cambridge University Press, Cambridge, p 1–600

    Book  Google Scholar 

  • Böhm F, Dommergues J-L, Meister C (1995) Breccias of the Adnet Formation: indicators of a Mid-Liassic tectonic event in the Northern Calcareous Alps (Salzburg/Austria). Geol Rundsch 84:272–286

    Article  Google Scholar 

  • Burchette TP, Wright VP (1992) Carbonate ramp depositional systems. Sediment Geol 79:3–57

    Article  Google Scholar 

  • Canfield DE, Raiswell R (1991) Carbonate precipitation and dissolution—its relevance to fossil preservation. In: Allison A, Briggs DEG (eds) Taphonomy—releasing the data locked in fossils. Plenum Press, Berlin, pp 411–453

    Google Scholar 

  • De Boer PL, Smith DG (1994) Orbital forcing and cyclic sequences, vol 4. International Association of Sedimentologists, Oxford (special publication)

    Book  Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1999) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanogr 10:965–971

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. A symposium. American Association of Petroleum Geologist Memoir, Tulsa, pp 108–121

  • Eder W (1982) Diagenetic redistribution of carbonate, a process in forming limestone-marl alternations (Devonian and Carboniferous, Rheinisches Schiefergebirge, W. Germany). In: Einsele G, Seilacher A (eds) Cyclic and events stratification. Springer, Berlin, pp 98–112

    Chapter  Google Scholar 

  • Einsele G, Ricken W, Seilacher A (1991) Basic concepts and terms. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, New York, pp 1–19

    Google Scholar 

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on northeastern Banks Islands, N.W.T. Bull Can Petr Geo 19:730–781

    Google Scholar 

  • Fabricius FH (1966) Beckensedimentation und Riffbildung an der Wende Trias/Jura in den Bayerisch-Tiroler Kalkalpen. Int Sedim Petrogr Ser 9, Leiden, vol 9, pp 1–143

  • Flügel E (2010) Microfacies of carbonate rocks. Springer, Berlin

    Book  Google Scholar 

  • Füchtbauer H (1988) Sedimente und sedimentgesteine. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Interscience Publishers John Wiley and Sons, New York

    Google Scholar 

  • Ghose BK (1977) Paleoecology of the Cenozoic reefal foraminifers and algae—a brief review. Palaeogeogr, Palaeoclimatol, Palaeoecolog 22:231–256

    Article  Google Scholar 

  • Hallam A (1964) Origin of the limestone-shale rhythms in the Blue Lias of England: a composite theory. J Geol 72:157–168

    Article  Google Scholar 

  • Hallam A (1986) Origin of minor limestone-shale cycles. Climatically induced or diagenetic? Geol 14:609–612

    Article  Google Scholar 

  • Heba G, Prichonnet G, El Albani A (2009) Meteoric diagenesis of Upper Cretaceous and Paleocene-Eocene shallow-water carbonates in the Kruja Platform (Albania): geochemical evidence. Geol Carpathica 60:165–179

    Article  Google Scholar 

  • Heim D (1990) Tone und Tonminerale: Grundlagen der Sedimentologie und Mineralogie. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Hollmann R (1962) Über Subsolution und die Knollenkalke des calcare Ammonitico Rosso Superiore im Monte Baldo (Malm; Norditalien). N Jb Geol Paläontol, Mh 1962:163–174

    Google Scholar 

  • Hollmann R (1964) Subsolutions-Fragmente (Zur Biostratinomie der Ammonoidea im Malm des Monte Baldo, Norditalien). N Jb Geol Paläont Abh 119:22–82

    Google Scholar 

  • Hottinger L (1973) Selceted Paleogene Larger Foraminifera. In: Hallam A (ed) Atlas of paleobiogeography. Elsevier, Amsterdam, pp 443–452

    Google Scholar 

  • Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull Soc géol Fr 168:491–505

    Google Scholar 

  • Hu XM, Jansa L, Wang CS (2008) Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretac Res 29:301–305

    Article  Google Scholar 

  • Hudson JD, Jenkyns ML (1969) Conglomerates in the Adnet Limestones of the Adnet (Austria) and the origin of the “Scheck”. N Jb Geol Paläontol, Mh 1969:552–558

    Google Scholar 

  • Illies H (1949) Die Lithogenese des Untereozäns in Nordwestdeutschland. Mitt Geol Staatsinst Hambg 18:7–46

    Google Scholar 

  • Inden RF, Moore CH (1983) Beach environments. In: Scholle PA, Bebout DG, Moore CH (eds), Carbonate depositional environments. American Association of Petroleum Geologists Memoirs 33, pp 211–265

  • Jeans CV (1980) Early submarine lithification in the red chalk and lower chalk of eastern England: a bacterial control model and its implications. Proc Yorks Geol Soc 43:81–157

    Article  Google Scholar 

  • Jeans C, Hu X, Mortimore R (2012) Calcite cements and the stratigraphical significance of the marine δ13C carbonate reference curve for the Upper Cretaceous Chalk of England. Acta Geol Polon 62:173–196

    Article  Google Scholar 

  • Jenkyns HC (1974) Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurrassic: a diagenetic model. Int Assoc Sedimentol Spec Publ 1:249–271

    Google Scholar 

  • Kahsnitz MM, Zhang Q, Willems H (2016) Stratigraphic distribution of larger benthic foraminifera Lockhartia in South Tibet (China). J Foraminifer Res 46:34–47

    Article  Google Scholar 

  • Kennedy WJ, Garrison RE (1975) Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentol 22:311–386

    Article  Google Scholar 

  • Küspert W (1982) Environmental changes during oil shale deposition as deduced from stable isotope ratios. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin, pp 482–503

    Chapter  Google Scholar 

  • Li HX, Wang CS, Hue XM (2005) Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Creta Res 26:33–41

    Article  Google Scholar 

  • Li J, Hu X, Garzanti E, An W, Wang J (2015) Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): stratigraphic response to initial India-Asia continental collision. J Asian Earth Sci 104:39–54

    Article  Google Scholar 

  • Liu G, Einsele G (1994) Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol Rundsch 83:32–61

    Article  Google Scholar 

  • Logan BW, Semeniuk V (1976) Dynamic metamorphism; processes and products in Devonian carbonate rocks, Canning Basin. Geological Society of Australia, Sydney (special publication no. 6)

    Google Scholar 

  • Lucas G (1955) Caractères pétrographiques de calcaires noduleux, à faciès ammonitico rosso, de la region méditerranéenne. CR Hebd Séance Acad Sci 240:1909–1911

    Google Scholar 

  • McCrossan RG (1958) Sedimentary “boudinage” structure in the Upper Devonian Ireton Formation of Alberta. J Sediment Petrol 28:316–320

    Article  Google Scholar 

  • Möller NK, Kvingan K (1988) The genesis of nodular limestones in the Ordovician and Silurian of the Oslo Region (Norway). Sedimentol 35:405–420

    Article  Google Scholar 

  • Müller J, Fabricius F (1974) Magnesian-calcite nodules in the Ionian deep sea: an actualistic model for the formation of some nodular limestone. In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments: on land and under the sea. Spec Pub Int Ass Sediment, New Cork, pp 235–247

    Google Scholar 

  • Munnecke A, Samtleben C (1996) The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies 34:159–176

    Article  Google Scholar 

  • Munnecke A, Westphal H (2004) Schwankende Umweltbedingungen des südwestdeutschen Oberjura dokumentiert in Kalk-Mergel-Wechselfolgen. Jh Ges Natkd Württ, 160 Jahrg, 33–48

  • Munnecke A, Westphal H, Elrich M, Reijmer JJG (2001) The mineralogical composition of precursor sediments of calcareous rhythmites: a new approach. Int J Earth Sci 40:795–812

    Google Scholar 

  • Noble JPA, Howells KDM (1974) Early marine lithification of the nodular limestones in the Silurian of New Brunswick. Sedimentol 21:597–609

    Article  Google Scholar 

  • Patra A, Singh BP (2015) Facies characteristics and depositional environments of the Paleocene–Eocene strata of the Jaisalmer basin, western India. Carbonates Evaporites 30:331–346

    Article  Google Scholar 

  • Raiswell R (1988) Chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geol 16:641–644

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Liu G, Chen G (1994) Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res 99(B10):19917–19945

    Article  Google Scholar 

  • Reinhardt EG, Cavazza W, Patterson RT, Blenkinsop J (2000) Differential diagenesis of sedimentary components and the implication for strontium isotope analysis of carbonate rocks. Chem Geol 164:331–343

    Article  Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba—ecological micropaleontology. Springer Verlag, Berlin

    Google Scholar 

  • Ricken W (1986) Diagenetic Bedding: a model for limestone-marl alternations. Lecture Notes in earth sciences. Springer, Berlin

    Google Scholar 

  • Ricken W (1987) The carbonate compaction law: a new tool. Sedim 34:571–584

    Article  Google Scholar 

  • Ricken W, Eder W (1991) Diagenetic modification of calcareous beds—an overview. In: Ricken W, Seilacher A (eds) Einsele G. Cycles and events in stratigraphy, Springer, pp 430–449

    Google Scholar 

  • Schindewolf OH (1921) Beiträge zur Kenntnis der Kramenzelkalke und ihrer Entstehung. Geol Rundsch 12:20–35

    Article  Google Scholar 

  • Schindewolf OH (1923) Nochmals zur Kramenzelkalkfrage. Geol Rundsch 14:151–154

    Article  Google Scholar 

  • Schindewolf OH (1925) Einige Bemerkungen zur Entstehung der oberdevonischen Kramenzelgesteine. Zentralbl Mineral Geol Palaeontol 16:405–411

    Google Scholar 

  • Schlager M (1966) Bericht 1965 über geologische Arbeiten auf den Blättern Berchtesgaden (93) und Hallein (94). Verh geol B-A 1966:A50–A54

    Google Scholar 

  • Swart PK (2015) The geochemistry of carbonate diagenesis: the past, present and future. Sedimentol 62:1233–1304

    Article  Google Scholar 

  • Tucker ME (1974) Sedimentology of Paleozoic pelagic limestones: the Devonian Griotte (Southern France) and Cephalopodenkalk (Germany). In: Hsü KJ, Jenkyns HC (eds) Pelagic sediments: on land and under the sea. Spec Pub Int Ass Sediment, New Cork, pp 71–92

    Google Scholar 

  • Tucker ME, Wright VP (2008) Carbonate sedimentology. Blackwell Science, London

    Google Scholar 

  • von Engelhardt W (1973) Die Bildung von Sedimenten und Sedimentgesteinen. Sediment-Petrologie Teil 3. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, vol 6, pp 1–378

  • Wanless HR (1979) Limestone response to stress: pressure solution and dolomitization. J Sediment Petrol 49:437–462

    Google Scholar 

  • Westphal H, Head MJ, Munnecke A (2000) Differential diagenesis of rhythmic limestone alternations supported by palynological evidence. J Sediment Res 70:715–725

    Article  Google Scholar 

  • Willems H (1993) Geoscientific investigations in the Tethyan Himalaya. Fachbereich Geowissenschaften, Universität Bremen, Nr, Berichte, p 38

    Google Scholar 

  • Willems H, Zhou Z, Zhang B, Gräfe K-U (1996) Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch 85:723–754

    Article  Google Scholar 

  • Wray JL (1977) Calcareous algae. Elsevier, Amsterdam

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogeny. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zachos JC, Stott LD, Lohmann KC (1994) Evolution of Early Cenozoic marine temperatures. Paleoceanography 9:353–387

    Article  Google Scholar 

  • Zankl H (1969) Structural and textural evidence of early lithification in fine grained carbonate rock. Sedimentol 12:241–256

    Article  Google Scholar 

  • Zhang Q, Willems H, Ding L, Gräfe K-U, Appel E (2012) Initial India-Asia continental collision and foreland basin evolution in the Tethyan Himalaya of Tibet: evidence from stratigraphy and paleontology. J Geol 120:175–189

    Article  Google Scholar 

  • Zhang Q, Willems H, Ding L (2013) Evolution of the Paleocene-Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China. Int J Earth Sci (Geol Rundsch) 102:1427–1445

    Article  Google Scholar 

  • Zhang Q, Wendler I, Xu X, Willems H, Ding L (2017) Structure and magnitude of the carbon isotope excursion during the Paleocene–Eocene thermal maximum. Gondwana Res 46:114–123

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Q. Zhang, F. Wieseler, A. Hübner and C. Schott for their assistance with field and laboratory work. We gratefully thank the reviewers for their critical remarks and thorough review of the manuscript. This project is part of the priority program 1372 Tibetan Plateau: Formation–Climate–Ecosystem (TiP) and is funded by the German Science Foundation (DFG Wi725/29) and the University of Bremen (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela M. Kahsnitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahsnitz, M.M., Willems, H. Genesis of Paleocene and Lower Eocene shallow-water nodular limestone of South Tibet (China). Carbonates Evaporites 34, 199–218 (2019). https://doi.org/10.1007/s13146-017-0360-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0360-7

Keywords

Navigation