Skip to main content
Log in

Mathematical modeling of karstogenesis: an approach based on fracturing and hydrogeological processes

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The karstogenesis of a synthetic aquifer is analyzed as a function of the matrix permeability and the fracture density affecting the carbonate reservoir. The synthetic carbonate aquifer generation results from numerical simulations based on Discrete Fracture Network (DFN) and groundwater flow simulations. The aim is to simulate karstogenesis processes in an aquifer characterized by a fracture network, while matching field reality and respecting geometrical properties as closely as possible. DFN are simulated with the soft REZO3D that allows the generation of 3-D realistic fracture networks, especially regarding the relative position of fractures that control the overall network connectivity. These generated DFN are then meshed and considered to perform groundwater flow simulation with the model GroundWater (GW). At each time step and for each fracture element, flow velocity and the mean groundwater age are extracted and used in an analogical dissolution equation that computes the aperture evolution. This equation relies on empirical parameters calibrated with former speleogenesis studies. In this paper, karstogenesis simulations are performed using fixed-head hydraulic boundary conditions within a single stratum as a function of two fracture density settings. The results are interpreted in terms of head fields, mean groundwater age distributions; while total flow rate and average aperture are analyzed as a function of time. The effect of fracture density and rock matrix permeability are then assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bakalowicz M (2006) Importance of regional study site conditions in elaborating concepts and approaches in karst science. Geol Soc Am Spec Pap 404:15–22. doi:10.1130/2006.2404(02)

    Google Scholar 

  • Bauer S (2003) Modeling of karst aquifer genesis: influence of exchange flow. Water Resour Res 39:1285–1297. doi:10.1029/2003WR002218

    Article  Google Scholar 

  • Bauer S, Liedl R, Sauter M (2000) Modelling of karst development considering conduit-matrix exchange flow. In: Proceedings of the ModelCARE’99 conference; calibration and reliability in groundwater modelling; coping with uncertainty, vol 265. IAHS-AISH Publication, Zürich, pp 10–15

  • Bloomfield JP, Barker JA (2005) MOPOD: a generic model of porosity development. Geol Soc Lond Spec Publ 249:73–77. doi:10.1144/GSL.SP.2005.249.01.06

    Article  Google Scholar 

  • Bloomfield JP, Barker JA, Robinson N (2005) Modeling fracture porosity development using simple growth laws. Ground Water 43:314–326

    Article  Google Scholar 

  • Cornaton FJ (2003) Deterministic models of groundwater age, life expectancy and transit time distributions in advective-dispersive systems (Ph.D. thesis). University of Neuchâtel, Neuchâtel, Switzerland

  • Cornaton FJ (2007) Ground water (GW): a 3-D ground water flow, mass transport and heat transfer finite element simulator. University of Neuchâtel, Neuchâtel

    Google Scholar 

  • Cornaton F, Perrochet P (2006a) Groundwater age, life expectancy and transit time distributions in advective–dispersive systems; 2. Reservoir theory for sub-drainage basins. Adv Water Resour 29:1292–1305

    Article  Google Scholar 

  • Cornaton F, Perrochet P (2006b) Groundwater age, life expectancy and transit time distributions in advective–dispersive systems: 1. Generalized reservoir theory. Adv Water Resour 29:1267–1291

    Article  Google Scholar 

  • Cornaton FJ, Park Y-J, Normani SD, Sudicky EA, Sykes JF (2008) Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications. Water Resour Res 44:W04406. doi:10.1029/2007WR006208

    Article  Google Scholar 

  • Dörfliger N, Fleury P, Ladouche B (2009) Inverse modeling approach to allogenic karst system characterization. Ground Water 47:414–426. doi:10.1111/j.1745-6584.2008.00517.x

    Article  Google Scholar 

  • Dreybrodt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32:2923–2935

    Article  Google Scholar 

  • Dreybrodt W, Eisenlohr L (2000) Limestone dissolution rates in karst environments. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville

  • Dreybrodt W, Gabrovsek F, Romanov D (2005) Processes of speleogenesis: a modeling approach, Karst Research Institute, ZRC SAZU, Postojna, Slovenia

  • Fleury P, Ladouche B, Conroux Y, Jourde H, Dörfliger N (2009) Modelling the hydrologic functions of a karst aquifer under active water management—the Lez spring. J Hydrol 365:235–243

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Jeannin PY (1996) Structure et comportement hydraulique des aquifères karstiques. Université de Neuchâtel, Neuchâtel

    Google Scholar 

  • Josnin J-Y, Jourde H, Fenart P, Bidaux P (2002) A three-dimensional model to simulate joint networks in layered rocks. Can J Earth Sci 39:1443–1455

    Article  Google Scholar 

  • Jourde H (1999) Simulation d’essais de puits en milieu fracturé à partir d’un modèle discret basé sur des lois mécaniques de fracturation; validation sur sites experimentaux. Simulation of well testing in fractured media using a discrete model based on the mechanical laws of fractures; validation on experimental sites (Ph.D. thesis). Universite Montpellier II, Sciences et techniques du Languedoc, Montpellier, France

  • Jourde H, Cornaton F, Pistre S, Bidaux P (2002) Flow behavior in a dual fracture network. J Hydrol 266:99–119

    Article  Google Scholar 

  • Jourde H, Fenart P, Vinches M, Pistre S, Vayssade B (2007) Relationship between the geometrical and structural properties of layered fractured rocks and their effective permeability tensor. A simulation study. J Hydrol 337:117–132

    Article  Google Scholar 

  • Kaufmann G (2003) A model comparison of karst aquifer evolution for different matrix-flow formulations. J Hydrol 283:281–289

    Article  Google Scholar 

  • Kaufmann G, Braun J (1999) Karst aquifer evolution in fractured rocks. Water Resour Res 35:3223–3238

    Article  Google Scholar 

  • Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36:1381–1391

    Article  Google Scholar 

  • Kaufmann G, Romanov D, Hiller T (2010) Modeling three-dimensional karst aquifer evolution using different matrix-flow contributions. J Hydrol 388:241–250. doi:10.1016/j.jhydrol.2010.05.001

    Article  Google Scholar 

  • Kiraly L, Jeannin P-Y, Sauter M (1998) Introducing to karst modelling; modelling in karst systems. Bull d’Hydrogeol 16:1–6

    Google Scholar 

  • Klimchouk AB, Ford DC (2000) Types of karst and evolution of hydrogeologic setting. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville

  • Lafare A (2011) Modélisation mathématique de la spéléogenèse: une approche hybride à partir de réseaux de fractures discrets et de simulations hydrogéologiques (thèse de doctorat, Eaux Continentales et Société - UM2). Université de Montpellier 2, Montpellier, France

  • Lafare A, Jourde H, Leonardi V, Pistre S, Dörfliger N (2009) Speleogenesis of Mediterranean karsts; a modelling approach based on realistic fracture networks. In: Hypogene speleogenesis and karst hydrogeology of artesian basins; proceedings, Ukrainian Institute of Speleology and Karstology Special Paper. Presented at the International conference; hyogene speleogenesis and karst hydrogeology of artesian basins, Ukrainian Institute of Speleology and Karstology, Simferopol, Ukraine (UKR), Chernivtsi, Ukraine, pp 75–81

  • Liedl R, Sauter M, Hueckinhaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39:11

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques (Ph.D. thesis). Université de Dijon, Dijon, France

  • Mazzilli N, Guinot V, Jourde H (2012) Sensitivity analysis of conceptual model calibration to initialisation bias. Application to karst spring discharge models. Adv Water Resour 42:1–16. doi:10.1016/j.advwatres.2012.03.020

    Article  Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Palmer A (2000) Digital modeling of individual solution conduits. In: Klimchouk A, Ford D, Palmer A, Dreybrodt W (eds) Speleogenesis: evolution of karst aquifers. National Speleological Society, Huntsville

    Google Scholar 

  • Palmer AN (2001) Dynamics of cave development by allogenic water. Acta Carsologica 30(2):14–32

    Google Scholar 

  • Romanov D, Dreybrodt W, Gabrovšek F (2002) Interaction of fracture and conduit flow in the evolution of karst aquifers. In: Martin JB, Wicks C, Sasowsky ID (eds) Proceedings of the symposium on karst aquifers: florida and related environments. Presented at the Symposium on Karst Aquifers: Florida and Related Environments, Karst Waters Institute, Charles Town, WV, pp 1–6

  • Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW. Germany) (Ph.D. thesis). Eberhard Karls Univ. Tübingen, TGA, C13, Tübingen, Germany

  • Tritz S, Guinot V, Jourde H (2011) Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model. J Hydrol 397:250–262. doi:10.1016/j.jhydrol.2010.12.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Conseil Régional of Languedoc Roussillon, as well as the BRGM and Carnot fund, for the financial support of this work carried out in the framework of the Antoine Lafare’s Ph.D. The authors would also like to thank Fabien Cornaton, presently Director, GMC at DHI-WASY GmbH (Germany), the CHYN of the University of Neuchâtel, (Switzerland), for permitting the using of the GroundWater modeling software, and for precious advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Lafare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafare, A., Jourde, H., Léonardi, V. et al. Mathematical modeling of karstogenesis: an approach based on fracturing and hydrogeological processes. Carbonates Evaporites 32, 391–401 (2017). https://doi.org/10.1007/s13146-017-0337-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-017-0337-6

Keywords

Navigation