Carbonates and Evaporites

, Volume 32, Issue 1, pp 63–74 | Cite as

Clay minerals from rock salt of Salt Range Formation (Late Neoproterozoic–Early Cambrian, Pakistan)

  • Iaroslava Iaremchuk
  • Mohammad Tariq
  • Sophiya Hryniv
  • Serhiy Vovnyuk
  • Fanwei Meng
Original Article


The clay minerals of Late Neoproterozoic–Early Cambrian rock salt of Salt Range Formation of Pakistan have been studied by means of X-ray diffraction, scanning electron microscopy and dispersive X-ray spectrometry, complex thermal and chemical analyses. The clay minerals association of pelitic fraction of water-insoluble residue of these deposits consists of corrensite, chlorite and illite with the admixture of unordered mixed-layered chlorite–corrensite and chlorite–smectite; in some samples, the admixture of smectite occurs. The expandable layers in corrensite are determined as smectite. In studied samples the chlorite, corrensite and mixed-layered species are presented by trioctahedral Mg-rich type and illite is dioctahedral and enriched by Fe; this association of clay minerals is typical for evaporite deposits. Transformation of clay minerals proceeded under the impact of several factors of different direction and intensity. In evaporite basin, the elevated salinity of brines reinforces the processes of clay minerals structure ordering causing disappearance of mixed-layered minerals and thus decreasing the number of clay mineral species; in the brines originated from SO4-rich seawater, the clay mineral associations are richer comparing to Ca-rich brines. Local factors—volcanic ash input, elevated content of organic matter slow down the transformation processes thus also increasing the number of clay mineral species. We explain the unexpectedly rich clay mineral association (as for the halite stage of evaporation) in studied rocks by the strong effect of local factors.


Neoproterozoic Clay minerals XRD Rock salt Salt Range Formation Pakistan 



This research is supported by Major State Basic Research Development Program (973 Program, No 2011CB403007) and National Natural Science Foundation of China (No 40703018; 41173051; 41172131).


  1. Ahmad W, Alam S (1999) Organic geochemistry and source rock characteristics of Salt Range Formation, Potwar Basin. AAPG Search and Discovery Article. PAPG/SPE Annual Technical Conference 1999, Islamabad, Pakistan, October 1999; Abstracts, #90146 (2012)Google Scholar
  2. Bąbel M, Schreiber BC (2014) Geochemistry of evaporites and evolution of seawater. In: Holland H, Turekian K (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 483–560CrossRefGoogle Scholar
  3. Baker DM, Lillie RJ, Yeats RS, Johnson GD, Mohammad Yousuf, Zamin ASH (1988) Development of the Himalayan frontal thrust zone—Salt Range, Pakistan. Geology 16:3–7CrossRefGoogle Scholar
  4. Baqri SRH, Rajpar AR (1991) The clay mineral studies of the Khewra Sandstone, Eastern Salt Range. Geol Bull Univ Peshawar 24:203–214Google Scholar
  5. Bars EA, Kogan SS (1979) Metodicheskoe rukovodstvo po issledovaniyu organicheskikh veshchestv podziemnykh vod neftegazonosnykh oblastey. Moskva, Nedra (in Russian)Google Scholar
  6. Beaufort D, Baronnet A, Lanson B, Meunier A (1997) Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). Am Mineral 82:109–124CrossRefGoogle Scholar
  7. Bhat GM, Craig J, Hafiz M, Hakhoo N, Thurow JW, Thusu B, Cozzi A (2012) Geology and hydrocarbon potential of Neoproterozoic–Cambrian Basins in Asia: an introduction. In: Bhat GM, Craig J, Thurow JW, Thusu B, Cozzi A (eds) Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia, vol 366. Geological Society, London, Special Publication, pp 1–18Google Scholar
  8. Bilonizhka P, Iaremchuk I, Hryniv S, Vovnyuk S (2012) Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine. Biuletyn PIG 449:137–146Google Scholar
  9. Bodine MW Jr (1983) Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks. In: Sixth International Symposium on Salt 1:267–284Google Scholar
  10. Brigatti MF, Poppi L (1984) Crystal chemistry of corrensite: a review. Clay Clay Miner 32:391–399CrossRefGoogle Scholar
  11. Calvo JP, Blanc-Valleron MM, Rodriguez Arandia JP, Rouchy JM, Sanz ME (1999) Authigenic clay minerals in continental evaporitic environments. Int Assoc Sedimentol Spec Publ 27:129–151Google Scholar
  12. Chang HK, Mackenzie FT, Schoonmaker J (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clay Clay Miner 34:407–423CrossRefGoogle Scholar
  13. Charlot G (1960) Les Méthodes de la chimie analytique: analyse quantitative minérale, 4e édition. Masson et Cie Chartres, ParisGoogle Scholar
  14. Drits VA, Kossovskaya AG (1990) Glinistye mineraly: smektity, smeshanosloynye obrazovaniya. Moskva, Nauka (in Russian)Google Scholar
  15. Drits VA, Kossovskaya AG (1991) Glinistye mineraly: sliudy, khlority. Moskva, Nauka (in Russian)Google Scholar
  16. Drits VA, Ivanovskaya TA, Sakharov BA, Zviagina BB, Gor’kova NV, Pokrovskaya EV, Savichev AT (2011) Mixed-layer corrensite-chlorites and their formation mechanism in the glauconitic sandstone-clayey rocks (Riphean, Anabar Uplift). Lithol Miner Resour 46:566–594CrossRefGoogle Scholar
  17. Farah A, Abbas G, DeJong KA, Kees A, Lawrence RD (1984) Evolution of the lithosphere in Pakistan. Tectonophysics 105:207–227CrossRefGoogle Scholar
  18. Frank-Kamenetskiy VA (ed) (1983) Rentgenographiya osnovnykh tipov porodoobrazuyushchikh mineralov (sloistye i karkasnye silikaty). Leningrad, Nedra (in Russian)Google Scholar
  19. Frank-Kamenetskiy VA, Kotov NV, Goylo EL (1983) Transformatsionnye preobrazovaniya sloistykh silikatov. Leningrad, Nedra (in Russian)Google Scholar
  20. Ghazi S, Mountney NP (2011) Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan. Sediment Geol 233:88–110CrossRefGoogle Scholar
  21. Grim RE (1953) Clay Mineralogy. McGraw-Hill Book Co., Inc., New YorkGoogle Scholar
  22. Honty M, Uhlík P, Šucha V, Čaplovičova M, Franců J, Clauer N, Biroň A (2004) Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin). Clay Clay Miner 52:533–551CrossRefGoogle Scholar
  23. Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66:3733–3756CrossRefGoogle Scholar
  24. Ivanov AG, Apollonov VN, Borisenkov VI (1980) Mineralnye paragenezy galopelitov v otlozheniyakh kaliynykh soley. Dokl Akad Nauk SSSR 253:469–472 (in Russian) Google Scholar
  25. Jiang W-T, Peacor DR (1994) Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. J Metamorph Geol 12:867–884CrossRefGoogle Scholar
  26. Kazanskiy YP (1976) Sedimentologia. Novosibirsk, Nauka (in Russian) Google Scholar
  27. Kazmi AH, Jan MQ (eds) (1997) Geology and Tectonics of Pakistan. Graphic Publishers, Nazimabad KarachiGoogle Scholar
  28. Khan MA, Riaz Ahmed, Raza HA, Arif Kemal (1986) Geology of petroleum in Kohat-Potwar Depression, Pakistan. AAPG Bull 70:396–414Google Scholar
  29. Klubova TT (1973) Glinistye mineraly i ikh rol v genezise, migratsii i akumulyatsii nefti. Moskva, Nedra (in Russian) Google Scholar
  30. Kopp OC, Fallis SM (1974) Corrensite in the Wellington Formation, Lyons, Kansas. Am Mineral 59:623–624Google Scholar
  31. Kossovskaya AG, Drits VA (1975) Kristalokhimiya dioktaedritseskikh sliud, khloritov i korrensitov kak indikatorov geologitseskiukh obstanovok. In: Kossovskaya AG (ed) Kristalokhimiya mineralov i geologitseskie problemy. Moskva, Nauka, pp 60–69 (in Russian) Google Scholar
  32. Kovalevich VM, Peryt TM, Petrichenko OI (1998) Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. J Geol 106:695–712CrossRefGoogle Scholar
  33. Kovalevych VM, Marshall T, Peryt TM, Petrychenko OY, Zhukova SA (2006) Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia). Precambrian Res 144:39–51CrossRefGoogle Scholar
  34. Lowenshtein TK, Timofeeff MN, Brenman ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 29:1086–1088CrossRefGoogle Scholar
  35. Mazumdar A, Bhattacharya SK (2004) Stable isotopic study of late Neoproterozoic-early Cambrian (?) sediments from Nagaur–Ganganagar basin, western India: possible signatures of global and regional C-isotopic events. Geochem J 38:163–175CrossRefGoogle Scholar
  36. Mazumdar A, Strauss H (2006) Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur–Ganganagar Basin, India): constraints on intrabasinal correlation and global sulfur cycle. Precambrian Res 149(3–4):217–230CrossRefGoogle Scholar
  37. Millot G (1970) Geology of clays. Springer-Verlag, New YorkCrossRefGoogle Scholar
  38. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford New YorkGoogle Scholar
  39. Murakami T, Sato T, Inoue A (1999) HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. Am Mineral 84:1080–1087CrossRefGoogle Scholar
  40. Pansu M, Gautheyrou J (2006) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer-Verlag, BerlinCrossRefGoogle Scholar
  41. Pastukhova MV (1965) K poznaniyu autigennykh silikatnykh i aliumosilikatnykh mineralov v solenosnykh porodakh. Litologiya i poleznye iskopaemye 3:78–90 (in Russian) Google Scholar
  42. Petrychenko OY, Peryt TM, Chechel EI (2005) Early Cambrian seawater chemistry from fluid inclusion in halite from Siberian evaporites. Chem Geol 219:149–161CrossRefGoogle Scholar
  43. Popova NP, Stoliarova IA (eds) (1974) Chimicheskiy analiz gornykh porod i mineralov. Moskva, Nedra (in Russian)Google Scholar
  44. Reynolds RC Jr (1988) Mixed layer chlorite minerals. Min Soc Am Rev Mineral 19:601–629Google Scholar
  45. Robinson D, Schmidt STh, Santana de Zambora A (2002) Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites. J Metamorp Geol 20:167–174CrossRefGoogle Scholar
  46. Saleemi AA, Ahmed Z (2000) Mineral and chemical composition of Karak mudstone, Kohat Plateau, Pakistan: implications for smectite-illitization and provenance. Sediment Geol 130:229–247CrossRefGoogle Scholar
  47. Schiffman P, Staudigel H (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands. J Metamorph Geol 13:487–498CrossRefGoogle Scholar
  48. Schröder S, Scheiber BC, Amthor JE, Matter A (2004) Stratigraphy and environmental conditions of the terminal Neoproterozoic–Cambrian period in Oman: evidence from sulphur isotopes. J Geol Soc London 161:489–499CrossRefGoogle Scholar
  49. Shah SMI (ed) (1977) Stratigraphy of Pakistan. Memoirs of the geological survey of Pakistan, vol 12. Geological Survey of Pakistan, QuettaGoogle Scholar
  50. Smith AG (2012) A review of the Ediacaran to Early Cambrian (‘Infra-Cambrian’) evaporites and associated sediments of the Middle East. In: Bhat GM, Craig J, Thurow JW, Thusu B, Cozzi A (eds) Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia, vol 366. Geological Society, London, Special Publications, pp 229–250Google Scholar
  51. Sokolova TN (1982) Autigennoye silikatnoye mineraloobrazovanie raznykh stadiy osoloneniya. Moskva, Nauka (in Russian)Google Scholar
  52. Strakhov NM (1962) Osnovy teorii litogeneza (Zakonomernosti sostava i razmeshcheniya aridnykh otlozheniy T. 3). Moskva, AN SSSR (in Russian) Google Scholar
  53. Strauss H, Banerjee DM, Kumar V (2001) The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater-evidence from the cyclic Hanseran evaporites, NW India. Chem Geol 175:17–28CrossRefGoogle Scholar
  54. Turner CE, Fishman NS (1991) Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau. Geol Soc Am Bull 103:538–558CrossRefGoogle Scholar
  55. Uhlík P, Honty M, Šucha V, Franců J, Biroň A, Clauer N, Hanzelyová Z, Majzlan J (2002) Influence of salt-bearing environment to illitization. In: Proceedings of the XVII Congress of CBGA Bratislava, Geol Carpath 53:CD-ROMGoogle Scholar
  56. Yaremchuk YV (2010) Hlynysti mineraly evaporytiv fanerozoyu ta yikhnya zalezhnist vid stadiyi zhushchennya rozsoliv i khimichnoho typu okeanichnoyi vody. Suchasni problemy litolohiyi osadovykh baseyniv Ukrayiny ta sumizhnykh terytoriy: zb nauk pr IGN NAN Ukrayiny 3:107–115 (in Ukrainian) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Iaroslava Iaremchuk
    • 1
  • Mohammad Tariq
    • 2
  • Sophiya Hryniv
    • 1
  • Serhiy Vovnyuk
    • 1
  • Fanwei Meng
    • 3
    • 4
  1. 1.Institute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of UkraineLvivUkraine
  2. 2.Department of Petroleum and Gas EngineeringBaluchistan University of Information Technology, Engineering and Management SciencesQuettaPakistan
  3. 3.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  4. 4.State Key Laboratory for Paleobiology and StratigraphyNanjing Institute of Geology and Paleontology Chinese Academy of SciencesNanjingChina

Personalised recommendations