Carbonates and Evaporites

, Volume 32, Issue 1, pp 1–12 | Cite as

A study of carbonate beach sands from the Yucatan Peninsula, Mexico: a case study

  • J. J. Kasper-Zubillaga
  • E. Arellano-Torres
  • J. S. Armstrong-Altrin
  • A. N. Sial
Original Article


Sedimentological, geochemical, and X-ray diffraction (XRD) analyses in addition to the determination of biogenic fraction components (BFC) were performed in mollusk shells from carbonate beach samples collected on the northern coast of the Yucatan Peninsula, Mexico. The most abundant components of the BFC were bivalves and gastropods shells, ranging from 88.1 to 99.2 % and from 0.1 to 6.0 %, respectively, followed by minor percentages of foraminifera, coral fragments, bryozoa, oolites, spicules, and ostracods. A combination of major element, trace element, and XRD techniques were performed to show how the Mg/Ca and Mg/Sr ratios determine the possibility of a recrystallization process in bivalves and gastropods, which may be attributed to early diagenetic mechanisms caused by groundwater flows, subaerial exposure, high evaporation rates, and neomorphism. The rare earth element analyses gave the average anomalies for the following ratios (Pr/Yb)PAAS and MuQ ratio > 1, (Eu/Eu*)PAAS and MuQ and (Ce/Ce*)PAAS and MuQ < 1, suggesting little incorporation of sea water in the BFC of the shells from the Yucatan beach sands. This is also supported by the flat pattern trends of bivalves and gastropods based on the normalized patterns of light rare earth element compared to heavy rare earth element concentrations. This paper is also a contribution to the methodology of analysis of carbonate sands, i.e., whole bulk composition isolation into their main biogenic components and the accumulation of major, trace, and rare earth elements deposited into their shells, initially under subaquatic marine conditions and currently exposed to subaerial coastal influences based on the allochthonous character of the shells.


Sedimentology Biogenic fraction components (BFC) Geochemistry X-ray diffraction Yucatan Mexico 



We are grateful to Dr. Ofelia Morton-Bermea, Elizabeth Hernández-Alvarez, Rufino Lozano-SantaCruz, Patricia Girón-García, and Dr. Teresa Pi-I-Puig, for the geochemical and X-diffraction analysis. This research was supported by the Instituto de Ciencias del Mar y Limnología, UNAM (109), and by the SEP-Conacyt 238457 and PAPIIT (IA101213) Projects. We thank Mr. Patrick Bennett Weill for English language review. All authors are grateful to the Editor and three anonymous reviewers for the comments and corrections made to improve this paper.

Supplementary material

13146_2015_283_MOESM1_ESM.doc (284 kb)
Supplementary material 1 (DOC 284 kb)


  1. Appendini CM, Salles P, Mendoza ET, López J, Torres-Freyermuth A (2012) Longshore sediment transport on the Northern coast of the Yucatan Peninsula. J Coas Res 28:1404–1417CrossRefGoogle Scholar
  2. Armstrong-Altrin JS, Madhavaraju J, Sial AN, Kasper-Zubillaga JJ, Nagarajan R, Flores-Castro K, Rodríguez JL (2011) Petrography and stable isotope geochemistry of the cretaceous El Abra limestones (Actopan), Mexico: implication on diagenesis. J Geol Soc Ind 77:349–359CrossRefGoogle Scholar
  3. Bau M, Dulski P (1996) Distributions of yttrium and rare-earth elements in the Penge and Kuruman iron-formation, Transvaal Supergroup, South Africa. Prec Resea 79:37–55CrossRefGoogle Scholar
  4. Budd DA (1988) Aragonite-to-calcite transformation during fresh-water diagenesis of carbonates: insights from pore-water chemistry. Geol Soc Am Bull 100:1260–1270CrossRefGoogle Scholar
  5. Byrne RH, Sholkovitz ER (1996) Marine chemistry and geochemistry of the lanthanides. In: Eyring L, Gschneidner KA Jr (eds) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam, pp 497–593Google Scholar
  6. Caccia VG, Millero FJ, Palanques A (2007) Distribution of yttrium and rare earths in Florida bay sediments. Mar Chem 104:1420–1433CrossRefGoogle Scholar
  7. Callender WR, Powell EN, Staff GM, Davies DJ (1992) Distinguishing autochthony, parautochthony and allochthony using taphofacies analysis: can cold seep assemblages be discriminated from assemblages of the nearshore and continental shelf? Palaios 7:409–421CrossRefGoogle Scholar
  8. Chave KE (1954) Aspects of the biochemistry of magnesium. Calcareous marine organisms. J Geol 62:266–283CrossRefGoogle Scholar
  9. Cuevas-Jiménez A, Euán-Ávila J (2009) Morphodynamics of carbonate beaches in the Yucatán Peninsula. Ciencias Marinas 35:307–320Google Scholar
  10. Elderfield H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219CrossRefGoogle Scholar
  11. Enriquez C, Mariño-Tapia IJ, Herrera-Silveira JA (2010) Dispersion in the Yucatan coastal zone: implications for red tide events. Cont Shelf Res 30:127–137CrossRefGoogle Scholar
  12. Fernández-Eguiarte A, Gallegos-García A, Zavala-Hidalgo J (1992) Oceanografía Física (Masas de Agua y Mareas de los Mares Mexicanos): Atlas Nacional de México, escala 1: 4000.000: México, Instituto de Geografía, Universidad Nacional Autónoma de México, 1 mapa (Oceanographic Chart)Google Scholar
  13. Folk L (1980) Petrology of sedimentary rocks. Austin Texas, HemphillGoogle Scholar
  14. Folk RL, Robles R (1964) Carbonate sands of Isla Perez, alacran reef complex, Yucatán. J Geol 72:255–292CrossRefGoogle Scholar
  15. Foster P, Cravo A (2003) Minor elements and trace metals in the shell of marine gastropods from a shore in Tropical East Africa. Water Air Soil Poll 145:53–65CrossRefGoogle Scholar
  16. Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283CrossRefGoogle Scholar
  17. Harriss RC (1965) Trace element distribution in molluscan skeletal material. I. Magnesium, iron, manganese and strontium Bull. Mar Sci 15:262–273Google Scholar
  18. Hendry JP, Ditchfield PW, Marshall JD (2006) Two-stage neomorphism of Jurassic aragonitic bivalves; implications for early diagenesis. J Sed Res 65:214–224. doi: 10.1306/D4268077-2B26-11D7-8648000102C1865D Google Scholar
  19. Horta-Puga G, Carriquiry JD (2012) Coral Ba/Ca molar ratios as a proxy of precipitation in the northern Yucatan Peninsula, Mexico. Appl Geochem 27:1579–1586CrossRefGoogle Scholar
  20. Hoskin CM (1963) Recent carbonate sedimentation of Alacran Reef, Yucatan. National Academy of Sciences-National Research Council, Mexico Washington, p 160Google Scholar
  21. Jacob DE, Soldati AL, Wirth R, Huth J, Wehrmeister U, Hofmeister W (2008) Nanostructure, composition and mechanisms of bivalve shell growth. Geochim et Cosmochim Acta 72:5401–5415CrossRefGoogle Scholar
  22. Johannesson HK, Doyle L, Hawkins DL Jr, Cortes A (2007) Do Archean chemical sediments record ancient seawater rare earth element patterns? Geochim et Cosmochim Acta 70:871–890CrossRefGoogle Scholar
  23. Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim et Cosmochim Acta 69:1041–1058CrossRefGoogle Scholar
  24. Karisiddaiah SM, Veerayya M, Guptha MVS (1988) Texture, carbonate content and component composition of Mauritius Beach sands, Indian Ocean. J Coas Res 4:465–474Google Scholar
  25. Kasper-Zubillaga JJ, Carranza-Edwards A (2005) Grain size discrimination between sands of desert and coastal dunes from northwestern Mexico. Rev Mex de Ciencias Geológicas 22:383–390Google Scholar
  26. Kasper-Zubillaga JJ, Zolezzi-Ruiz H, Carranza Edwards A, Girón García P, Ortiz-Zamora GV, Palma M (2007) Sedimentological, modal analysis and geochemical studies of desert and coastal dunes, Altar Desert, NW México. Earth Surf Processes Landf 32:498–508Google Scholar
  27. Kasper-Zubillaga JJ, Acevedo-Vargas B, Morton-Bermea O, Ortiz-Zamora G (2008) Rare earth elements of the Altar Desert dune and coastal sands, northwestern México. Chemie Der Erde-Geochem 68:45–59CrossRefGoogle Scholar
  28. Kasper-Zubillaga JJ, Armstrong-Altrin JS, Rosales-Hoz L (2014) Geochemical study of corals from the Puerto Morelos Reef, Southeastern Mexico. Est Coast Shelf Sci 151:78–87CrossRefGoogle Scholar
  29. Keller NB, Demina LV, Os’kina NS (2007) Variations in the chemical composition of the skeletons of non-zooxanthellate scleractinian (Anthozoa: scleractinia) corals. Geochem Int 45:832–839CrossRefGoogle Scholar
  30. Lavoie D, Bergeron M (1993) REE patterns as a tool for recognition of diagenetic beds: a case from the Lower Devonian Upper Gaspé Limestones, Gespé Peninsula, Québec. J Atl Geosci Soc revue de la Société Géoscientifique de l’Atlantique 29:51–60Google Scholar
  31. Lawrence MG, Greig A, Collerson KD, Kamber BS (2006) Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem 12:39–72CrossRefGoogle Scholar
  32. Lewis SE, Shields GA, Kamber BS, Lough JM (2007) A multi-trace element coral record of land-use changes in the Burdekin River catchment, NE Australia. Palaeogeo Palaeoclim Palaeoecol 246:471–487CrossRefGoogle Scholar
  33. Logan BW, Harding JL, Aur WM, Williams JD, Rg S (1969) Carbonate sediments on reefs, Yucatan shelf, Mexico. Part I. Late quaternary sediments. Mem Am Assoc Petrol Geol 11:1–128Google Scholar
  34. Lowenstein TK, Timofeeff MN, Brennan ST, Hardie LA, Demicco RV (2001) Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294:1086–1088CrossRefGoogle Scholar
  35. Madhavaraju J, González-León CM (2012) Depositional conditions and source of rare earth elements in carbonate strata of the Aptian-Albian Mural Formation. Pitaycachi section, northeastern Sonora, Mexico Revista Mexicana de Ciencias Geológicas 29:478–491Google Scholar
  36. Madhavaraju J, González-León CM, Lee YI, Armstrong-Altrin JS, Reyes-Campero LM (2010) Geochemistry of the mural formation (Aptian-Albian) of the Bisbee group, Northern Sonora, Mexico. Cretac Res 31:400–414CrossRefGoogle Scholar
  37. Morse JW, Wang Q, Tsio MY (1997) Influences of temperature and Mg: ca ratio on CaCO3 precipitates from seawater. Geology 25:85–87CrossRefGoogle Scholar
  38. Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Geosc J 15:9–25CrossRefGoogle Scholar
  39. Nagendra R, Nagarajan R, Bakkiaraj D, Armstrong-Altrin JS (2011) Depositional and post-depositional setting of Maastrichtian limestone, Ariyalur Group, Cauvery Basin, South India: a geochemical appraisal. Carbon. Evaporites 26:127–147CrossRefGoogle Scholar
  40. Nolasco-Montero E, Carranza-Edwards A (1987) Estudio sedimentológico regional de playas de Yucatán y Quintana Roo, México. Anales del Instituto de Ciencias del Mar y Limnología. Universidad Nacional Autónoma de México 15:49–66Google Scholar
  41. Oldershaw AE, Scoffin TP (1967) The source of ferroan and non-ferroan calcite cements in the Halkin and Wenlock Limestones 5:309–320Google Scholar
  42. Pérez-Villegas G (1990) Wind Sheet IV.4.2, Vientos Dominantes 1:4 000.000. Atlas Nacional de México. Instituto de Geografía, Universidad Nacional Autónoma de México: Mexico. Wind ChartGoogle Scholar
  43. Perry EC, Velazquez-Oliman G (1996) The hydrogeology of the northern Yucatan Peninsula, Mexico, with special reference to coastal processes: LOICZ (Land Ocean Interactions in the Coastal Zone) ground water discharge in the Coastal Zone. In: Buddemeier RW (ed) Proceedings of an international symposium, LOICZ/R&S/96-8 179: 92–97Google Scholar
  44. Pettijohn FJ (1975) Sedimentary rocks. Harper and Row, New YorkGoogle Scholar
  45. Piper DZ, Bau M (2013) Normalized rare earth elements in water, sediments and wine: identifying sources and environmental redox conditions. Am J Anal Chem 4:69–83CrossRefGoogle Scholar
  46. Porter SM (2007) Seawater chemistry and early carbonate biomineralization. Science 316:1302CrossRefGoogle Scholar
  47. Ruíz-Rentería F, van Tussenbroek B, Jordan-Dahlgren E (1998). Puerto Morelos, Quintana Roo, Mexico. Caribbean Coastal Marine Productivity (Caricomp). In: Kjerfve (ed) Coral reef, seagrass, and mangrove site characteristics. UNESCO, Paris, p 343Google Scholar
  48. Sandberg PA, Hudson JD (1983) Aragonite relic preservation in Jurassic calcite-replaced bivalves. Sedimentology 30:879–892CrossRefGoogle Scholar
  49. Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34CrossRefGoogle Scholar
  50. Stanley SM (2006) Influence of seawater chemistry on biomineralization throughout phanerozoic time: paleontological and experimental evidence. Palaeogeog Palaeoclim Palaeoecol 232:214–236CrossRefGoogle Scholar
  51. Stanley SM, Hardie LA (1998) Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Paleaogeog Palaeoclim Palaeocol 144:3–19CrossRefGoogle Scholar
  52. Stanley SM, Ries JB, Hardie LA (2002) Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc Nat Aca Sci 99:15323–15326CrossRefGoogle Scholar
  53. Swan PRH, Sandilands M (1995) Introduction to geological data analysis. Blackwell, OxfordGoogle Scholar
  54. Swineheart JH, Smith FH (1979) Iron and Manganese deposition in the periostraca of several bivalves mollusks. Biol Bull 156:369–381CrossRefGoogle Scholar
  55. Taylor SR, McLennan SM (1985) The continental crust: Its composition and evolution. Blackwell Scientific Publication, OxfordGoogle Scholar
  56. Turekian KK (1976) Oceans. Prentice Hall, New JerseyGoogle Scholar
  57. Vega-Cendejas ME, de Santillana MH (2004) Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Legatos, Yucatan, Mexico. Est Coast Shelf Sci 60:285–299CrossRefGoogle Scholar
  58. Wang X, Dong Z, Zhang J, Qu J, Zhao A (2003) Grain size characteristics of dune sands in the central Taklimakan Sand Sea. Sed Geol 161:1–14CrossRefGoogle Scholar
  59. Ward WC (1975) Petrology and diagenesis of carbonate eolianites of Northeastern Yucatan Peninsula, Mexico. In: Wantland KF, Pusey III, WC (eds) Belize shelf—carbonate sediments, clastic sediments, and ecology, AAPG, Boulder, Tulsa, pp. 500–571Google Scholar
  60. Ward WC, Brady MJ (1979) Strandline sedimentation of carbonate grainstone upper Pleistocene Yucatan peninsula, Mexico. AAPG 65:362–369Google Scholar
  61. Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81CrossRefGoogle Scholar
  62. Watson RL (1971) Origin of Shell Beaches, Padre Island, Texas. J Sed Petrol 41:1105–1111Google Scholar
  63. Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565CrossRefGoogle Scholar
  64. Weidie AE (1985) Geology of the Yucatan Platform, Part 1. In: Ward WC, Weidie AE, Back W (eds) Geology and hydrogeology of the Yucatan and Quaternary Geology of northeastern Yucatan Peninsula. New Orleans Geological Society, New Orleans, pp 23–53Google Scholar
  65. Wilkinson BH, Algeo TJ (1989) Sedimentary carbonate record of calcium-magnesium cycling. Am J Sci 289:1158–1194CrossRefGoogle Scholar
  66. Zhao H, Jones B (2013) Distribution and interpretation of rare earth elements and yttrium in Cenozoic dolostones and limestones on Cayman Brac, British West Indies. Sed Geol 284:26–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. J. Kasper-Zubillaga
    • 1
  • E. Arellano-Torres
    • 2
  • J. S. Armstrong-Altrin
    • 1
  • A. N. Sial
    • 3
  1. 1.Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y CosterosUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  2. 2.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  3. 3.Nucleo de Estudos Geoquímicos e Laboratório de Isótopos Estáveis (NEG - LABISE), Departmento de GeologiaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations