Carbonates and Evaporites

, Volume 30, Issue 1, pp 45–58 | Cite as

Microbial mixing zone dolomitization and karst development within Isla de Mona Dolomite, Isla de Mona, Puerto Rico

  • Jonathan Sumrall
  • John Mylroie
  • Patricia Kambesis
Original Article


Modification of the mixing zone model to include microbial processes that promote dolomitization explains many of the petrographic, isotopic, and outcrop observations found on Isla de Mona. Large flank margin caves at the contact between the Isla de Mona Dolomite and the capping Lirio Limestone formed during prolonged, likely episodic, periods with a stable lens position. These periods would produce a stable halocline. The halocline is hypothesized to be the zone of dolomitization in the microbial mixing zone model. Collection of organics at the density interface of the halocline coupled with sulfate reduction by sulfate-reducing bacteria would establish a geochemical environment that promotes dolomitization of the precursor limestone. This microbial community and geochemical environment would overcome the kinetic and thermodynamic barriers associated with the previous mixing zone model.


Karst Dolomite Mixing zone Isla de Mona 


  1. Badiozamani K (1973) The Dorag dolomitization model: application to the middle Ordovician of Wisconsin. J Sediment Petrol 43:965–984Google Scholar
  2. Bottrell SH, Smart PL, Whitaker F, Raiswell R (1991) Geochemistry and isotope systematics of sulphur in the mixing zone of Bahamian blue holes. Appl Geochem 6:97–103CrossRefGoogle Scholar
  3. Bottrell SH, Carew JL, Mylroie JE (1993) Bacterial sulphate reduction in flank margin environments: evidence from sulphur isotopes. In: White B (ed) Proceeding, sixth symposium on the geology of the Bahamas, San Salvador, Bahamian Field Station, pp 17–21Google Scholar
  4. Briggs RP, Seiders VM (1972) Geologic map of Isla de Mona quadrangle, Puerto Rico: USGS Miscellaneous Investigations Map I-718Google Scholar
  5. Budd DA (1997) Cenozoic dolomites of carbonate islands: their attributes and origin. Earth Sci Rev 42:1–47CrossRefGoogle Scholar
  6. Burke K (1988) Tectonic evolution of the Caribbean. Annu Rev Earth Planet Sci 16:201–230CrossRefGoogle Scholar
  7. Casanova J, Bodenan F, Negrel P, Azaroual M (1999) Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cezallier hydrothermal springs (Massif Central, France). Sediment Geol 126:125–145CrossRefGoogle Scholar
  8. Chafetz HS, Buczinski C (1992) Bacterially induced lithification of microbial mats. Palaios 7:277–293CrossRefGoogle Scholar
  9. Dickson JA (1966) Carbonate identification and genesis as revealed by staining. J Sediment Res 36:491–505Google Scholar
  10. Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthra Island, Bahamas). Sediment Geol 51:745–765CrossRefGoogle Scholar
  11. Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals: reviews in mineralogy, vol 35. Mineralogical Society of America, Washington, DC, pp 161–180Google Scholar
  12. Frank EF, Wicks C, Mylroie JE, Troester JW, Alexander Jr EC, Carew JL (1998a) Geology of Isla de Mona, Puerto Rico: Journal of Cave and Karst Studies 60:69–72Google Scholar
  13. Frank EF, Mylroie JM, Troester JW, Alexander Jr EC, Carew JL (1998b) Karst development and speleogenesis, Isla de Mona, Puerto Rico: Journal of Cave and Karst Studies 60:73–83Google Scholar
  14. Gonzalez LA, Ruiz HA, Taggart BE, Budd AF, Monell V (1997) Geology of Isla de Mona, Puerto Rico. In: Vacher HL, Quinn T (eds) Geology and hydrogeology of carbonate islands. Developments in sedimentology, vol 54. Elsevier, New York, pp 327–358Google Scholar
  15. Grove C, Jerram DA (2011) jPOR: an ImageJ macro to quantify total optical porosity from blue-stained thin sections. Comput Geosci 37:1850–1859CrossRefGoogle Scholar
  16. Hardie LA (1987) Dolomitization: a critical view of some current views. J Sediment Res 57:166–183CrossRefGoogle Scholar
  17. Kaye CA (1959) Geology of Isla Mona, Puerto Rico, and notes on the age of the Mona Passage. US Geol Surv Prof Paper 317:141–178Google Scholar
  18. Leveille RJ, Fyfe WS, Longstaffe FJ (2000) Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chem Geol 169:339–355. doi:10.1016/s0009-2541(00)00213-8 CrossRefGoogle Scholar
  19. Luczaj JA (2006) Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch: a case for hydrothermal diagenesis. AAPG Bull 90:1719–1738CrossRefGoogle Scholar
  20. Machel HG (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite CJR, Rizzi G, Darke G (eds) The geometry and petrogenesis of dolomite hydrocarbon reservoirs: geological society. London, Special Publications 235, pp 7–63Google Scholar
  21. Machel HG, Mountjoy EW (1990) Coastal mixing zone dolomite, forward modeling, and massive dolomitization of platform-margin carbonates: discussion. J Sediment Petrol 60:1008–1012CrossRefGoogle Scholar
  22. Martinez MI, White WB (1999) A laboratory investigation of the relative dissolution rates of the Lirio limestone and the Isla de Mona dolomite and implications for cave and karst development on Isla de Mona. J Cave Karst Stud 61:7–12Google Scholar
  23. Masson DG, Scanlon KM (1991) The neotectonic setting of Puerto Rico. Geol Soc Am Bull 103:144–154CrossRefGoogle Scholar
  24. Mylroie JE, Balcerzak WJ (1992) Interaction of microbiology and karst processes in Quaternary carbonate island aquifers. In: Stanford JA, Simons JJ (eds) Proceeding, first international conference on ground water ecology, American Water Resources Association, Bethesda, pp 37–46Google Scholar
  25. Mylroie JE, Carew JL (1990) The flank margin model for dissolution cave development in carbonate platforms. Earth Surf Proc Land 15:413–424CrossRefGoogle Scholar
  26. Mylroie JR, Mylroie JE (2007) Development of the carbonate island karst model. J Cave Karst Stud 69:59–75Google Scholar
  27. Rivadeneyra MA, Ramos-Cormenzana A, Delgado G, Delgado R (1996) Process of carbonate precipitation by Deleya halophile. Curr Microbiol 32:308–313CrossRefGoogle Scholar
  28. Roberts J, Bennett PC, González LA, Macpherson GL, Miliken KL (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology 32:277–280CrossRefGoogle Scholar
  29. Rodriguez RW, Trumbull JV, Dillon WP (1977) Marine Geologic Map of Isla de Mona Area, Puerto Rico: US Geological Survey, Miscellaneous Investigations SeriesGoogle Scholar
  30. Ruiz HM (1993) Sedimentology and diagenesis of Isla de Mona, Puerto Rico: MS Thesis, University of Iowa, Iowa City, p 86Google Scholar
  31. Ruiz HM, Gonzalez LA, Budd AF (1991) Sedimentology and diagenesis of Miocene Lirio Limestone, Isla de Mona, Puerto Rico: American Association of Petroleum Geologists Bulletin, vol 75, pp 664–665Google Scholar
  32. Sánchez-Navas A, Martín-Algarra A, Nieto F (1998) Bacterially-mediated authigenesis of clays in phosphate stromatolites. Sedimentology 45:519–533Google Scholar
  33. Sánchez-Román M (2006) Calibration of microbial and geochemical signals related to dolomite formation by moderately halophilic aerobic bacteria: Significance and implication of dolomite in the geologic record, ETH Zurich (Swiss Federal Institute of Technology), Switzerland, thesis 16875, p 134Google Scholar
  34. Sánchez-Román M, Rivadeneyra M, Vasconcelos C, Mckenzie JA (2007) Biomineralization of carbonate and phosphate by halophilic bacteria: influence of Ca2+ and Mg2+ ions. FEMS Microbiol Ecol 61:279–284Google Scholar
  35. Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie JA, Zenobi R, Rivadeneyra MA (2008) Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology 36:879–882CrossRefGoogle Scholar
  36. Schlager W (2005) Carbonate sedimentology and sequence stratigraphy: Tulsa, Oklahoma, SEPM concepts in sedimentology and paleontology #8, p 200Google Scholar
  37. Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, San DiegoGoogle Scholar
  38. van Lith Y, Wartmann R, Vasconcelos C, McKenzie JA (2003a) Microbial fossilization in carbonates sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50:237–245CrossRefGoogle Scholar
  39. van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003b) Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79CrossRefGoogle Scholar
  40. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222CrossRefGoogle Scholar
  41. Visscher J, Stolz JF (2005) Microbial mats as bioreactors: populations, process, and products. Palaeogeogr Palaeoclimatol Palaeoecol 219:87–100CrossRefGoogle Scholar
  42. Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094CrossRefGoogle Scholar
  43. Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region. South Australia: significance and implications. Sedimentology 52:987–1008CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonathan Sumrall
    • 1
  • John Mylroie
    • 2
  • Patricia Kambesis
    • 2
  1. 1.Department of Geography and GeologySam Houston State UniversityHuntsvilleUSA
  2. 2.Department of GeosciencesMississippi State UniversityMississippi StateUSA

Personalised recommendations