Skip to main content
Log in

Timing and origin of megabreccia and folds along the Early Middle Cambrian margin of the Georgina Basin, Australia

  • Review
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Megabreccia and related folds are two of the most interesting features of the Lawn Hill Outlier, a small carbonate platform situated in the northeastern part of the Georgina Basin in Queensland, Australia. Field studies and stable isotopic data were used to assess the timing and origin of folds and megabreccias in this carbonate plateau, and understand its possible relationship to an asteroid impact. Together with field and isotope data, the reconstruction of the sequence of events that led to the cratonization of the Centralian Superbasin supports a synsedimentary timing of formation for the folds and breccias. Some of the brittle faulting and veining accompanying strain localisation within the Thorntonia Limestones may represent, however, post-sedimentary, syntectonic deformation, possibly linked to the Late Devonian Alice Springs Orogeny. An origin for the folding and megabreccias linked to an asteroid impact cannot be completely discounted. Nevertheless, observed field relationships concerning the spatial distribution and typology of breccias occurring in basement and cover agree with stable isotopic signatures, suggesting that multiple intrabasinal processes contributed to platform destabilisation. Processes such as karstification, solution collapse, and fault reactivation, were the most likely mechanisms responsible for the formation of intrastratal breccias and slump folds in the Lawn Hill Outlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agrinier P, Martinez I, Javoy M, Schaerer U (1992) Carbon and oxygen isotope study of carbonates from highly shocked clasts of the polymict breccia of the Haughton Crater, Canada. LPI Contribution 790:1–2

    Google Scholar 

  • Pietsch BA et al (1991) Bauhinia Downs 1:250 000 geological map series. Northern Territory Geological Survey Explanatory Notes SE 53-3

  • Shergold JH et al (1991) Late Proterozoic and early Palaeozoic palaeontology and biostratigraphy of the Amadeus Basin. Bureau of Mineral Resources Bulletin pp 97–111

  • Glickson AY et al (1996) Geology of the western Musgrave Block, central Australia with particular reference to the mafic–ultramafic Giles Complex, 239. Australian Geological Survey Organisation Bulletin, p 177

  • Albertao GA, Martins J, Paulo P (1996) A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil. Sediment Geol 104(1–4):189–201

    Article  Google Scholar 

  • Allen JRL (1982) Sedimentary structures: their character and physical basis, vol 1. Elsevier, Amsterdam p 593

    Google Scholar 

  • Allmendinger RW (2002) StereoWin. http://www.geo.cornell.edu/geology/faculty/RWA/RWA.html

  • Andrews SJ (1991) Surface mapping of Cambrian limestone at the Century deposit North West Queensland: a summary of findings (unpublished), CRAE report number 17730

  • Andrews SJ (1998) Stratigraphy and depositional setting of the upper McNamara Group, Lawn Hills region, Northwest Queensland. Metallogeny of the McArthur River-Mount Isa-Cloncurry minerals province Economic Geology and the Bulletin of the Society of Economic Geologists, 93(8):1132–1152

    Google Scholar 

  • Andrews LM, Railsback LB (1997) Controls on stylolite development: morphologic, lithologic, and temporal evidence from bedding-parallel and transverse stylolites from the U.S. Appalachians. J Geol 105(1):59–73

    Article  Google Scholar 

  • Aranburu A, Fernandez-Mendiola PA, Lopez-Horgue MA, Garcia-Mondejar J (2002) Syntectonic hydrothermal calcite in a faulted carbonate platform margin (Albian of Jorrios, northern Spain). Sedimentology 49(4):875–890

    Article  Google Scholar 

  • Blatt H, Middleton G, Murray R (1980) Origin of Sedimentary Rocks. Prentice-Hall, New Jersey p 643

    Google Scholar 

  • Boehm A, Moore JC (2002) Fluidized sandstone intrusions as an indicator of paleostress orientation, Santa Cruz, California. Geofluids 2:147–161

    Article  Google Scholar 

  • Bons PD (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 336(1–4):1–17

    Article  Google Scholar 

  • Brasier MD, Sukhov S (1998) The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian; northern Siberia data. Can J Earth Sci 35:353–373

    Article  Google Scholar 

  • Broadbent GC, Waltho AE, Berkman DA, Mackenzie DH (eds) (1998) Century zinc-lead-silver deposit. Australasian Institute of Mining and Metallurgy, Melbourne, pp 729–735

  • Carter EK, Opik AA (1961) Lawn Hill, first edition. Queensland 1:250 000 Geological Series—Explanatory Notes. Bureau of Mineral Resources, Geology and Geophysics, Australia, n. 21

  • Cervelli P, Segall P, Johnson K, Lisowski M, Miklius A (2002) Sudden aseismic fault slip on the south flank of Kilauea volcano. 415(6875):1014–1018

  • Cook HE, Mullins HT (1983) Basin margin environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. The American Association of Petroleum Geologists, Tulsa, pp 539–617

    Google Scholar 

  • Dansereau P, Bourque P-A (2001) The Neigette breccia: remnant of the West Point reef tract in the Matapedia Valley area, and witness of Late Silurian synsedimentary faulting, Gaspe Belt, Northern Appalachians, Quebec. Bull Can Pet Geol 49(2):327–345

    Article  Google Scholar 

  • De Keyser F (1969) The phosphate-bearing Cambrian formations in the Lawn Hill and Lady Annie districts, northwestern Queensland (unpublished). Australia, Bureau of Mineral Resources, Geology and Geophysics, Record 1969/147

  • De Keyser F (1973) A review of the middle Cambrian stratigraphy in the Queensland portion of the Georgina Basin, Geological Papers 1970–71. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, ACT, Canberra, pp 13–27

  • De Keyser F, Cook PJ (1972) Geology of the Middle Cambrian Phosphorites and Associated Sediments of Northwestern Queensland, 138. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, Canberra, ACT, p 79

  • Delaney PT, Pollard DD, Ziony JI, McKee EH (1986) Field relations between dikes and joints: emplacement processes and paleostress analysis. J Geol Res 91:4920–4938

    Article  Google Scholar 

  • Donnelly TH, Shergold JH, Southgate PN (1988) Anomalous geochemical signals from phosphatic Middle Cambrian rocks in the southern Georgina Basin, Australia. Sedimentology 35(4):549–570

    Article  Google Scholar 

  • Dypvik H, Jansa LF (2003) Sedimentary signatures and processes during marine bolide impacts: a review. Sediment Geol 161(3):309–337

    Article  Google Scholar 

  • Eliassen A, Talbot MR (2005) Solution-collapse breccias of the Minkinfjellet and Wordiekammen Formations, Central Spitsbergen, Svalbard: a large gypsum palaeokarst system. Sedimentology 52(4):775–794

    Article  Google Scholar 

  • Elliott CG, Williams PF (1988) Sediment slump structures: a review of diagnostic criteria and application to an example from Newfoundland. J Struct Geol 10(2):171–182

    Article  Google Scholar 

  • Elrick M (1995) Cyclostratigraphy of Middle Devonian carbonates of the eastern Great Basin. J Sediment Res 65(1b):61–79

    Google Scholar 

  • Elser JJ et al (2005) Response of grazing snails to phosphorus enrichment of modern stromatolitic microbial communities. Freshw Biol 50(11):1826–1835

    Article  Google Scholar 

  • Elser JJ, Watts J, Schampel JH, Farmer J (2006) Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecol Lett 9(3):292–300

    Article  Google Scholar 

  • Faure G (1991) Principles and applications of inorganic geochemistry. Prentice-Hall, New Jersey p 626

    Google Scholar 

  • Feltrin L (2006) Probabilistic and deterministic models of Pb–Zn mineralisation and post-mineralisation megabreccia, in the Lawn Hill region, Australia. Ph.D. Unpbl. Thesis, James Cook University, Townsville, p 460

  • Feltrin L, Oliver NHS, Kelso IJ, King S (2003) Basement metal scavenging during basin evolution; Cambrian and Proterozoic interaction at the Century Zn–Pb–Ag deposit, Northern Australia. In: Verweij JM, Doust H, Peach CJ, Spiers CJ, Swennen RAJ (eds) Geofluids IV. Elsevier, Utrecht, pp 159–162

    Google Scholar 

  • Feltrin L, McLellan JG, Oliver NHS (2009) Modelling the giant, Zn–Pb–Ag Century deposit, Queensland, Australia. Comput Geosci 35(1):108–133

    Article  Google Scholar 

  • Fisher NI, Lewis TL, Embleton BJ (1987) Statistical analysis of spherical data. Cambridge University Press, p 329

  • Flinn D (1979) The deformation matrix and the deformation ellipsoid. J Struct Geol 1(4):299–307

    Article  Google Scholar 

  • Glickson AY et al (1995) Geological framework and crustal evolution of the Giles Complex, western Musgrave Block, Western Australia. Australian Geological Survey Organisation. J Geol Geophys 16:41–68

    Google Scholar 

  • Gorter JD (1992) Cambro-Ordovician petroleum in the Centralian Superbasin: relationships with sea-level changes. American Association of Petroleum Geologists 76(7):1103

    Google Scholar 

  • Haines PW, Hand M, Sandiford M (2001) Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens. Aust J Earth Sci 48(6):911–928

    Article  Google Scholar 

  • Hallock P, Hine AC, Vargo GA, Elrod JA, Jaap WC (1988) Platforms of the Nicaraguan Rise; examples of the sensitivity of carbonate sedimentation to excess trophic resources. Geology 16(12):1104–1107

    Article  Google Scholar 

  • Hand M, Sandiford M (1999) Intraplate deformation in central Australia, the link between subsidence and fault reactivation. Tectonophysics 305(1–3):121–140

    Article  Google Scholar 

  • Helwig J (1970) Slump folds and early structures, Northeastern Newfoundland Appalachians. J Geol 78:172–187

    Article  Google Scholar 

  • Henderson RA, Southgate PN (1980) Cambrian evaporitic sequences from the Georgina Basin. Search 11(7–8):247–249

    Google Scholar 

  • Hobbs BE, Means WD, Williams PF (1976) An outline of structural geology. Wiley, New York

  • Howard PF (1972) Exploration for phosphorite in Australia. A case history. Econ Geol 67(8):1180–1192

    Article  Google Scholar 

  • Howard PF (1986) Regional review; Australia Proterozoic and Cambrian phosphorites (part of Phosphate deposits of the world, 1). In: Cook PJ, Shergold JH (eds) Cambridge University Press, Cambridge, pp 20–41

  • Howard PF, Cooney AM (1976) D Tree phosphate deposit, Georgina Basin, Queensland. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea; 4, Industrial minerals and rocks. AusIMM—Australasian Institute of Mining and Metallurgy, Melbourne, pp 265–273

  • Hutton LJ (1992) Report on the investigation of postulated astrobleme (unpublished), Geological Survey Division, Department of Minerals and Energy, Queensland

  • In-Chang R (2002) Tectonic and stratigraphic significance of the Middle Ordovician carbonate breccias in the Ogcheon Belt, South Korea. Isl Arc 11(3):149–169

    Article  Google Scholar 

  • Jackson MJ, Muir MD, Plumb KA (1987) Geology of the southern McArthur Basin, 220. Bureau of Mineral Resources Bulletin

  • Jaeger JC (1969) Elasticity, fracture and flow, with engineering and geological applications. Methuen and Co

  • Jansa LF (1993) Cometary impacts into ocean: their recognition and the threshold constraint for biological extinctions. Palaeogeogr Palaeoclimatol Palaeoecol 104(1–4):271–286

    Article  Google Scholar 

  • Jolly RJH, Sanderson DJ (1995) Variation in the form and distribution of dykes in the Mull swarm, Scotland. J Struct Geol 17(11):1543–1557

    Article  Google Scholar 

  • Korsch RJ, Goleby BR, Leven JH, Drummond BJ (1998) Crustal architecture of central Australia based on deep seismic reflection profiling. Tectonophysics Deep seismic profiling of the continents, II: A global survey 288(1–4):57–69

    Google Scholar 

  • Kuenen PH (1967) Emplacement of flysch-type sand beds. Sedimentology 9:203–244

    Article  Google Scholar 

  • Laznicka P (1989) Breccias and ores. Part 1: history, organization and petrography of breccias. Ore Geol Rev 4(4):315–344

    Article  Google Scholar 

  • Leroux H, Warme JE, Doukhan JC (1995) Shocked quartz in the alamo breccia, southern Nevada: evidence for a Devonian impact event. Geology 23(11):1003–1006

    Article  Google Scholar 

  • Lindsay JF, Brasier MD (1998) The nature and origin of the Lawn Hill structure a report to Pasminco exploration. AGSO, Canberra

    Google Scholar 

  • Lindsay J, Brasier M (2006) Impact craters as biospheric microenvironments, Lawn Hill structure, northern Australia. Astrobiology 6(2):348–363

    Article  Google Scholar 

  • Lindsay JF et al (2005) The Neoproterozoic-Cambrian record in Australia: a stable isotope study. Precambr Res 143(1):113–133

    Article  Google Scholar 

  • Loi A, Dabard M-P (2002) Controls of sea level fluctuations on the formation of Ordovician siliceous nodules in terrigenous offshore environments. Sediment Geol 153(3–4):65–84

    Article  Google Scholar 

  • Luebking GA, Longman MW, Carlisle WJ (2001) Unconformity-related chert/dolomite production in the Pennsylvanian Amsden formation, wolf springs fields, bull mountains basin of central Montana. AAPG Bull 85(1):131–148

    Google Scholar 

  • Maltman A (1984) On the term “soft-sediment deformation”. J Struct Geol 6(5):589–592

    Article  Google Scholar 

  • Marcotte D, Henry E (2002) Automatic joint set clustering using a mixture of bivariate normal distributions. Int J Rock Mech Min Sci 39(3):323–334

    Article  Google Scholar 

  • Masetti D, Neri C, Bosellini A (1991) Deep-water asymmetric cycles and progradation of carbonate platforms governed by high-frequency eustatic oscillations (Triassic of the Dolomites, Italy). Geology 19(4):336–339

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a palaeotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Melosh HJ (1985) Impact cratering mechanics—relationship between the shock-wave and excavation flow. Icarus 62(2):339–343

    Article  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350(6318):494–497

    Article  Google Scholar 

  • Middleton GV (1961) Evaporite solution breccias from the Mississippian of southwest Montana. J Sediment Res 31(2):189–195

    Google Scholar 

  • Nicolis G (1995) Introduction to Nonlinear Science. Cambridge University Press, New York p 254

    Book  Google Scholar 

  • Oliver NHS (2001) Linking of regional and local hydrothermal systems in the mid-crust by shearing and faulting. Tectonophysics 335(1–2):147–161

    Article  Google Scholar 

  • Oliver NHS et al (2006) Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Econ Geol 101:1–31

    Article  Google Scholar 

  • Opik AA (1957) The Cambrian Geology of Australia, 49. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, p 284

  • Opik AA (1958) The Cambrian Trilobite Redlichia: organisation and generic concept, 42. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, p 50

  • Opik AA (1970) Redlichia of the Ordian (Cambrian) of northern Australia and New South Wales, 114. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, p 67

  • Opik AA (1975) Templetonian and Ordian xystridurid trilobites of Australia, 121. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, Canberra, ACT, p 84

  • Opik AA (1982) Dolichometopid trilobites of Queensland, Northern Territory, and New South Wales, 175. Australia, Bureau of Mineral Resources, Geology and Geophysics, Bulletin, Canberra, ACT, p 85

  • Ormo J, Miyamoto H (2002) Computer modelling of the water resurge at a marine impact: the Lockne crater, Sweden. Deep-Sea Research Part Ii-Topical Studies in Oceanography 49(6):983–994

  • Payros A, Pujalte V, Orue-Etxebarria X (1999) The South Pyrenean Eocene carbonate megabreccias revisited: new interpretation based on evidence from the Pamplona Basin. Sediment Geol 125(3):165–194

    Article  Google Scholar 

  • Plumb KA (1979) The tectonic evolution of Australia. Earth Sci Rev 14(3):205–249

    Article  Google Scholar 

  • Plumb KA, Derrick GM, Needham RS, Shaw RD (1981) The Proterozoic of northern Australia. In: Hunter DR (ed) Precambrian of the Southern Hemisphere. Elsevier, Amsterdam, pp 205–307

    Chapter  Google Scholar 

  • Pollard DD (1973) Derivation and evaluation of a mechanical model for sheet intrusions. Tectonophysics 19(3):233–269

    Article  Google Scholar 

  • Pomar L, Obrador A, Westphal H (2002) Sub-wavebase cross-bedded grainstones on a distally steepened carbonate ramp, Upper Miocene, Menorca, Spain. Sedimentology 49(1):139–169

    Article  Google Scholar 

  • Potter PE, Pettijohn FJ (1963) Paleocurrents and basin analysis. Springer, New York p 296

    Book  Google Scholar 

  • Read JF (1985) Carbonate platform facies models. AAPG Bull 69(1):1–21

    Google Scholar 

  • Reed C, Wallace M (2004) Zn-Pb mineralisation in the Silvermines district, Ireland: a product of burial diagenesis. Miner Deposita 39(1):87–102

    Article  Google Scholar 

  • Robertson PB (1975) Zones of shock metamorphism at the Charlevoix impact structure, Quebec. Geol Soc Am Bull 86(12):1630–1638

    Article  Google Scholar 

  • Robertson PB, Grieve RAF (1977) Shock attenuation at terrestrial impact structures. Impact and explosion cratering; planetary and terrestrial implications. In: Proceedings of the Symposium on planetary cratering mechanics. Pergamon Press, pp 687–702

  • Rondot J (1994) Recognition of eroded astroblemes. Earth Sci Rev 35(4):331–365

    Article  Google Scholar 

  • Rossetti DF, Santos J, Antonio E (2003) Events of sediment deformation and mass failure in Upper Cretaceous estuarine deposits (Cameta Basin, northern Brazil) as evidence for seismic activity. Sediment Geol 161(1–2):107–130

    Article  Google Scholar 

  • Salisbury JA, Tomkins AG, Schaefer BF (2008) New insights into the size and timing of the Lawn Hill impact structure: relationship to the Century Zn–Pb deposit. Aust J Earth Sci 55(4):587–603

    Article  Google Scholar 

  • Sandiford M, Hand M (1998) Controls on the locus of intraplate deformation in central Australia. Earth Planet Sci Lett 162(1):97–110

    Article  Google Scholar 

  • Secor DT (1965) Role of fluid pressure in jointing. Am J Sci 263:633–646

    Article  Google Scholar 

  • Shaw RD, Etheridge MA, Lambeck K (1991) Development of the late Proterozoic to mid-Paleozoic, intracratonic Amadeus Basin in central Australia: a key to understanding tectonic forces in plate interiors. Tectonics 10(4):688–721

    Article  Google Scholar 

  • Shergold JH, Druce EC (1980) Upper Proterozoic and lower Paleozoic rocks of the Georgina Basin. In: Henderson RA, Druce EC (eds) The geology and geophysics of northeastern Australia. Geological Society of Australia. Queensland Division, Brisbane, pp 149–174

  • Shiki T, Cita MB, Gorsline DS (2000) Sedimentary features of seismites, seismo-turbidites and tsunamiites—an introduction. Sediment Geol 135(1):vii–vix

    Google Scholar 

  • Shoemaker EM (1992) Letter to the Australian Heritage Commission on the Lawn Hill Structure, Queensland

  • Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. AGSO J Geol Geophys 16:379–398

    Google Scholar 

  • Smith KG (1972) Stratigraphy of the Georgina Basin, 111. Bureau of Mineral Resources Bulletin

  • Smith JV (2000) Flow pattern within a Permian submarine slump recorded by oblique folds and deformed fossils, Ulladulla, south-eastern Australia. Sedimentology 47(2):357–366

    Article  Google Scholar 

  • Smith NM, Sunderman JA, Melhorn WN (1961) Breccia and Pennsylvanian cave filling in Mississippian Saint Louis Limestone, Putnam County, Indiana. J Sediment Res 31(2):275–287

    Article  Google Scholar 

  • Southgate PN (1988) A model for the development of phosphatic and calcareous lithofacies in the Middle Cambrian Thorntonia Limestone, Northeast Georgina Basin, Australia. Aust J Earth Sci 35(1):111–130

    Article  Google Scholar 

  • Southgate PN, Shergold JH (1991) Application of sequence stratigraphic concepts to Middle Cambrian phosphogenesis, Georgina Basin, Australia. BMR J Aust Geol Geophys 12(2):119–144

    Google Scholar 

  • Stewart A (1986) Proof of explosive origin for the Lawn Hill circular structure. Bureau of Mineral Resources, Geology and Geophysics, Australia, Research Newsletter 4, 10–11

  • Stewart A, Mitchell K (1987) Shatter cones at the Lawn Hill circular structure, northwestern Queensland; presumed astrobleme. Aust J Earth Sci 34(4):477–485

    Article  Google Scholar 

  • Stoffler D (1984) Glasses formed by hyper-velocity impact. J Non Cryst Solids 67(1–3):465–502

    Article  Google Scholar 

  • Swart PK, Burns SJ, Leder JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology: Isotope Geoscience section 86(2):89–96

    Google Scholar 

  • Szulc SA (1992) The stratigraphic reconstruction of a mega-breccia: a sedimentological study of the south western corner of the Lawn Hill Outlier (unpublished). B.Sc. (Hons.) Thesis, James Cook University, Townsville, p 97

  • Tarasewicz JPT, Woodcock NH, Dickson JAD (2005) Carbonate dilation breccias: examples from the damage zone to the Dent Fault, northwest England. Geol Soc Am Bull 117(5–6):736–745

    Article  Google Scholar 

  • van Loon AJ (2003) How ‘hard’ are hard-rock deformations? Earth Sci Rev 61(1):181–188

    Google Scholar 

  • Veevers JJ (2004) Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup; supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev 68(1–2):1–132

    Article  Google Scholar 

  • Veizer J et al (1999) 87Sr/86Sr, [delta]13C and [delta]18O evolution of Phanerozoic seawater. Chem Geol 161(1–3):59–88

    Article  Google Scholar 

  • Veizer J, Godderis Y, Francois LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408(6813):698–701

    Article  Google Scholar 

  • Vendeville BC, Jackson MPA (1992a) The fall of diapirs during thin-skinned extension. Mar Pet Geol 9(4):354–371

    Article  Google Scholar 

  • Vendeville BC, Jackson MPA (1992b) The rise of diapirs during thin-skinned extension. Mar Pet Geol 9(4):331–353

    Article  Google Scholar 

  • Walter MR, Veevers JJ, Calver CR, Grey K, Hilyard D (1992) The Proterozoic Centralian Superbasin: a frontier petroleum province, 1992 AAPG International Conference and Exhibition, p 77

  • Walter MR, Veevers JJ, Calver CR, Grey K (1995) Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Res 73(1):173–195

    Article  Google Scholar 

  • Whalen MT, Eberli GP, Van Buchem FSP, Mountjoy EW, Homewood PW (2000) Bypass margins, basin-restricted wedges, and platform-to-basin correlation, upper Devonian, canadian rocky mountains: implications for sequence stratigraphy of carbonate platform systems. J Sediment Res 70(4):913–936

    Article  Google Scholar 

  • Williams PF, Collins AR, Wiltshire RG (1969) Cleavage and penecontemporaneous deformation structures in sedimentary rocks. J Geol 77:415–425

    Article  Google Scholar 

  • Woodcock NH, Mort K (2008) Classification of fault breccias and related fault rocks. Geol Mag 145(3):435–440

    Article  Google Scholar 

  • Woodcock NH, Omma JE, Dickson JAD (2006) Chaotic breccia along the Dent Fault, NW England: implosion or collapse of a fault void? J Geol Soc 163(3):431–446

    Article  Google Scholar 

  • Zhao J-X, McCulloch MT, Korsch RJ (1994) Characterisation of a plume-related ~ 800 Ma magmatic event and its implications for basin formation in central-southern Australia. Earth Planetary Sci Lett 121(3–4):349–367

    Article  Google Scholar 

  • Zhuravlev AY (2001) Paleoecology of Cambrian reef ecosystems. In: Stanley GD (ed) The history and sedimentology of ancient reef systems, pp 121–157

Download references

Acknowledgments

Zinifex Pty. Ltd. Century Mine staff is acknowledged for allowing access and providing logistic support to the study area. Staff of the Central Science Laboratory of the University of Tasmania is acknowledged for undertaking isotopic work on samples collected in the study area. Mr. Ian Kelso, Prof. Ross Large and Ass. Prof. Tom Blenkinsop are acknowledged for discussions and review of this manuscript on the geological aspects of the Lawn Hill Outlier. This work is published under permission of the pmd*CRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Feltrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feltrin, L., Oliver, N.H.S. Timing and origin of megabreccia and folds along the Early Middle Cambrian margin of the Georgina Basin, Australia. Carbonates Evaporites 29, 3–31 (2014). https://doi.org/10.1007/s13146-014-0193-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-014-0193-6

Keywords

Navigation