Skip to main content

Differentiated characterization of karst aquifers: some contributions

Abstract

Because of the small radius of investigation of hydrogeological standard testing methods, the characterization of karst aquifers is still a challenge. The development of a karst conduit system introduces an element of large contrast in hydraulic conductivity in the hydraulic parameter field of a karst aquifer. It leads to complex flow patterns and transport phenomena that differ significantly from those observed in porous and fissured media. While on a local, i.e., borehole scale, the fissured matrix of karst aquifers can be regarded as a continuum, on a regional, i.e., catchment scale, the drainage of the aquifer system is controlled by the conduit system, which may have a highly anisotropic geometry. Therefore, characterization of karst aquifers requires a differentiated approach by the combination of various hydrogeological field methods or the application of large-scale tests, which cover the scale of dominant aquifer heterogeneities. Existing numerical modeling approaches can be applied for integral data interpretation on catchment scale.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Ashton K (1966) The analysis of flow data from karst drainage systems. Trans Cave Res Group Great Br 7(2):161–203

    Google Scholar 

  • Atkinson TC (1977) Diffuse and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Birk S, Hergarten S (2010) Early recession behaviour of spring hydrographs. J Hydrol 387:24–32

    Article  Google Scholar 

  • Birk S, Geyer T, Liedl R, Sauter M (2005) Process-based interpretation of tracer tests in carbonate aquifers. Ground Water 43(3):381–388

    Article  Google Scholar 

  • Birk S, Liedl R, Sauter M (2006) Karst spring responses examined by process-based modeling. Ground Water 286(1–4):832–836

    Article  Google Scholar 

  • Bourdet D (2002) Well test analysis: the use of advanced interpretation models. Handbook of petroleum exploration and production 3. Elsevier, Amsterdam, p 426

    Google Scholar 

  • Brown MC, Ford DC (1971) Quantitative tracer methods for investigations of karst hydrology systems, with special reference to the Maligne Basin area, Canada. Trans Cave Res Group Great Br 13(1):37–51

    Google Scholar 

  • Butscher C, Huggenberger P (2007) Implications for karst hydrology from 3D geological modeling using the aquifer base gradient approach. J Hydrol 342(1–2):184–198

    Article  Google Scholar 

  • Charlier JB, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64

    Article  Google Scholar 

  • Covington MD, Wicks CM, Saar MO (2009) A dimensionless number describing the effects of recharge and geometry on discharge from simple karstic aquifers. Water Resour Res 45:W11410. doi:10.1029/2009WR008004

    Article  Google Scholar 

  • Dörfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  • Doummar J, Sauter M, Geyer T (2012) Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She)—identification of relevant parameters influencing spring discharge. J Hydrol 426:112–123

    Article  Google Scholar 

  • Dreiss SY (1989) Regional scale transport in a karst aquifer—1. Component separation of spring flow hydrographs. Water Resour Res 25(1):117–125

    Article  Google Scholar 

  • Dreybrodt W, Gabrovsek F, Romanov D (2005) Processes of speleogenesis: a modeling approach. Carsologica 4, ZRC Publishing, Ljubljana

  • Drogue C (1992) Hydrodynamics of karstic aquifers: experimental sites in the mediterranean karst, Southern France. International Contribution to Hydrogeology 13, Verlag Heinz Heise, Hannover, Germany, pp 133–149

  • Einsiedl F (2005) Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers. J Hydrol 312:312–321

    Article  Google Scholar 

  • Field MS, Pinsky PF (2000) A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers. J Contam Hydrol 44:329–351

    Article  Google Scholar 

  • Forkasiewicz J, Paloc H (1967) Le régime de tarissement de la Foux de la Vis etude préliminaire. In: Proceedings of the Dubrovnik Symposium, October 1965, Hydrology of fractured rocks 1, pp 213-226

  • Geyer T (2008) Process-based characterization of flow and transport in karst aquifers at catchment scale. PhD thesis, Georg-August-Universität Göttingen

  • Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multi-tracer test approach to characterize reactive transport in karst aquifers. Ground Water 45(1):36–45

    Article  Google Scholar 

  • Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348:452–463

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in karst hydrogeology. International Contributions to Hydrogeology 26, Taylor & Francis, London

  • Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37(1):27–40

    Article  Google Scholar 

  • Göppert N, Goldscheider N (2008) Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46(1):61–68

    Google Scholar 

  • Hangos K, Cameron I (2001) Process modelling and model analysis. Process systems engineering 4. Academic Press, San Diego, p 543

    Google Scholar 

  • Hergarten S, Birk S (2007) A fractal approach to the recession of spring hydrographs. Geophys Res Lett 34:L11401. doi:10.1029/2007GL030097

    Article  Google Scholar 

  • Jazayeri Noushabadi MR, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, Southern France). J Hydrol 403:321–336

    Article  Google Scholar 

  • Jeannin P-Y, Sauter M (1998) Analysis of karst hydrodynamic behaviour using global approach: a review. Bulletin d’Hydrogéologie (Neuchâtel) 16:9–30

    Google Scholar 

  • Kiraly L (1978) La notion d’unité hydrogéologique dans le Jura (essai de définition). PhD thesis, Université de Neuchâtel

  • Kiraly L (2002) Karstification and groundwater flow. In: Proceedings of the conference on evolution of karst: from prekarst to cessation. Postojna-Ljubljana, pp 155–190

  • Kovács A, Perrochet P, Kiraly L, Jeannin P-Y (2005) A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J Hydrol 303:152–164

    Article  Google Scholar 

  • Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs—engineering, theory, and sustainability. Elsevier, Amsterdam

    Google Scholar 

  • Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1–11

    Article  Google Scholar 

  • Luhmann AJ, Covinton MD, Alexander SC, Chai SY, Schwartz BF, Groten JT, Alexander EC (2012) Comparing conservative and nonconservative tracers in karst and using them to estimate flow path geometry. J Hydrol 448–449:201–211

    Article  Google Scholar 

  • Maloszewski P, Zuber A (2002) Manual on lumped-parameter models used for the interpretation of environmental tracer data in groundwaters. In: Yurtsever Y (ed) Use of isotopes for analyses of flow and transport dynamics in groundwater systems. IAEA-UIAGS/CD 02-00131, IAEA Vienna, pp 1–50

  • Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes. J Hydrol 256:48–59

    Article  Google Scholar 

  • Maréchal JC, Ladouche B, Dörfliger N, Lachassagne P (2008) Interpretation of pumping tests in a mixed flow karst system. Water Resources Research 44. doi:10.1029/2007WR006288

  • Reimann T, Geyer T, Shoemaker B, Liedl R, Sauter M (2011) Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers. Water Resour Res 47:W11503. doi:10.1029/2011WR010446

    Google Scholar 

  • Renard P, Glenz D, Mejias M (2009) Understanding diagnostic plots for well-test interpretation. Hydrogeol J 17:589–600

    Article  Google Scholar 

  • Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW. Germany). Tübinger Geowissenschaftliche Arbeiten, C13

  • Sauter M (1995) Delineation of a karst aquifer using geological and hydrological data and information on landscape development. Carbonates Evaporites 10(2):161–170

    Article  Google Scholar 

  • Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005, US Geol Surv Tech Methods, Book 6, Chap A24

  • Teutsch G, Sauter M (1991) Groundwater modelling in karst terranes: scale effects, data acquisition and field validation. In: Proceedings of 3rd conference on hydrogeology, ecology, monitoring and management of ground water in karst terranes. Nashville, pp 17–35

  • White WB (1969) Conceptual models for carbonate aquifers. Ground Water 7(3):15–21

    Article  Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York

    Google Scholar 

  • Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67

    Article  Google Scholar 

  • Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) under grants no. GE 2173/2-2 and SA 501/24-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Geyer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geyer, T., Birk, S., Reimann, T. et al. Differentiated characterization of karst aquifers: some contributions. Carbonates Evaporites 28, 41–46 (2013). https://doi.org/10.1007/s13146-013-0150-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-013-0150-9

Keywords