Skip to main content
Log in

Geology, mineralogy, and isotope (Sr, S) geochemistry of the Likak celestite deposit, SW Iran

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Celestite mineralization in the Likak deposit is hosted by Early to Middle Miocene Gachsaran evaporitic formation. The celestite-bearing layers are composed of medium- to coarse-grained celestite crystals with different morphologies in a carbonate groundmass. The presence of carbonate and gypsum inclusions within celestite crystals as well as the pseudomorphic habits of some crystals suggests that celestite replaced preexisting carbonate and gypsum. The lithofacies features and faunal assemblage of the host rocks indicate subtidal–supratidal environments of deposition for country rocks. Strontium isotope analyses indicate that Sr originated from Middle Miocene seawater. Sulfur isotopic ratios indicate higher δ34S values in analyzed samples than those of Middle Miocene seawater. These higher values were probably resulted by bacterial reduction of sulfate. Based on petrographic evidences and Sr-isotope ages, it is revealed that mineralization occurred as a late-diagenetic process during deposition of Gachsaran Formation. Taking into account the available data, it can be suggested that precursors of the mineralizing fluids were probably produced by evaporation of seawater in a coastal sabkha setting. As these brines entered into underlying sediments, they leached considerable amounts of Sr from host sediments. Once these Sr-enriched fluids discharged back up into overlying beds containing gypsum and carbonate materials, celestite precipitation took place by replacement of the preexisting minerals as well as by mixing of the mineralizing fluids with sulfate-enriched brines entrapped within the beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdollahie Fard I, Sepehr M, Sherkati S (2011) Neogene salt in SW Iran and its interaction with Zagros folding. Geol Mag 148:854–867

    Article  Google Scholar 

  • Agard P, Omrani J, Jolivet L, Whitchurch H, Vrielynck B, Spakman W, Monie P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725

    Article  Google Scholar 

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran Publications, Farsi

  • Alavi M (2004) Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Allen MB, Budd GE, Leat PT, Whitham AG (eds) (2011) Geodynamic evolution of the Zagros. Geol Mag 148:687–1019

  • Amini Movahed M, Moghaddasi SJ, Babazadeh, SA (2009) A study of mineralogy and texture of Mazrae celestite ore deposit, Qom, Iran. National conference on investigating new techniques of earth sciences, Farsi

  • Bahroudi A, Koyi HA (2004) Tectono-sedimentary framework of the Gachsaran formation in the Zagros foreland basin. Mar Petrol Geol 21:1295–1310

    Article  Google Scholar 

  • Bazargani-Guilani K, Nekouvaght Tak MA (2008) Celestite ore deposit and occurrences of the Qom Formation, Oligo-Miocene, Central Iran. 2nd IASME/WSEAS international conference on geology and seismology, Cambridge, UK, pp 48–54

  • Bazargani-Guilani K, Rabbani MS (2005) Deposition of stratiform celestite of Aftar region, west of Semnan, Iran. Geosci Iran 12:30–41 (in Farsi)

    Google Scholar 

  • Butler GP (1969) Modern evaporite deposits and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. J Sed Petrol 39:70–89

    Google Scholar 

  • Canfield DE (2001) Isotope fractionation by natural populations of sulphate-reducing bacteria. Geochim Cosmochim Acta 65:1117–1124

    Article  Google Scholar 

  • Carlson EH (1987) Celestite replacements of evaporites in the Salina Group. Sed Geol 54:93–112

    Article  Google Scholar 

  • de Brodtkorb MK (1989) Celestite, worldwide classical ore fields. In: de Brodtkorb MK (ed) Nonmetalliferous stratabound ore fields. Van Nostrand, New York, pp 17–39

    Chapter  Google Scholar 

  • de Brodtkorb MK, Ramos V, Barbieri M, Ametrano S (1982) The evaporitic celestite-barite deposits of Neuquen, Argentina. Miner Deposita 17:423–436

    Article  Google Scholar 

  • Dill HG (2010) The “chessboard” classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth Sci Rev 100:1–420

    Article  Google Scholar 

  • Dill HG, Henjes-Kunst F, Berner Z, Stüben D (2009) Miocene diagenetic and epigenetic strontium mineralization in calcareous series from Cyprus and the Arabian Gulf: metallogenic perspective on sub- and suprasalt redox-controlled base metal deposits. J Asian Earth Sci 34:557–576

    Article  Google Scholar 

  • Ehrenberg SN, Pickard NAH, Laursen GV, Monibi S, Mossadegh ZK, Svana TA, Aqrawi AAM, McArthur JM, Thirlwall MF (2007) Strontium isotope stratigraphy of the Asmari formation (Oligocene–Lower Miocene), SW Iran. J Petrol Geol 30:107–128

    Article  Google Scholar 

  • Ehya F (1997) Geology, geochemistry, and the origin of celestite-bearing horizon of Gachsaran formation, Likak-Behbahan, Kohgiloye-va-Boyrahmad Province, Unpublished Msc Thesis, Shiraz University, Shiraz, Iran, Farsi

  • Ehya, F (2002) Geology and the origin of Mokhdan celestite occurrence, Busher Province, Iran. 20th symposium on geosciences, geological survey of Iran, Farsi

  • Farahani Fard N, Rasa I (2009) Mineralogy and geochemistry of celestine mining material, Arvaneh Mine in North West Semnan. National conference on investigating new techniques of earth sciences, Farsi

  • Ghasemi A, Talbot CJ (2006) A new tectonic scenario for the Sanandaj-Sirjan zone (Iran). J Asian Earth Sci 26:683–693

    Article  Google Scholar 

  • Gill WD, Ala MA (1972) Sedimentology of Gachsaran formation (lower Fars series), Southwest Iran. Am Assoc Pet Geol Bull 56:1965–1974

    Google Scholar 

  • González-Sánchez F, Camprubí A, González-Partida E, Puente-Solís R, Canet C, Centeno-García E, Atudorei V (2009) Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb–Zn deposits in the MVT province of northeastern Mexico. Miner Deposita 44:343–361

    Article  Google Scholar 

  • Hanor JS (2000) Barite-celestite geochemistry and environments of formation. In: Alpers CN, Jambor JL, Nordstorm DK (eds) Sulfate minerals: crystallography, geochemistry, and environmental significance. Rev Mineral Geochem 40:193–263

  • Hanor JS (2004) A model for the origin of large carbonate- and evaporite-hosted celestine deposits. J Sediment Res 74:168–175

    Article  Google Scholar 

  • Howarth RJ, McArthur JM (1997) Statistics for strontium isotope stratigraphy with a look-up table version. J Geol 105:441–456

    Article  Google Scholar 

  • James GA, Wynd JG (1965) Stratigraphical nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49:2182–2245

    Google Scholar 

  • Kashfi MS (1980) Stratigraphy and environmental sedimentology of lower Fars Group (Miocene), South-Southwest Iran. Am Assoc Pet Geol 64:2095–2107

    Google Scholar 

  • Kendall CGStC, Skipwith PAd’E (1969) Holocene shallow-water carbonate and evaporite sediments of Khor al Bazam, Abu Dhabi, Southwest Persian Gulf. Am Assoc Pet Geol Bull 53:841–869

    Google Scholar 

  • Kesler SE, Jones LM (1981) Sulphur and strontium isotopic geochemistry of celestite, barite and gypsum from Mesozoic Basins of northeastern Mexico. Chem Geol 31:211–240

    Article  Google Scholar 

  • Kinsman DJJ (1966) Gypsum and anhydrite of recent age, Persian Gulf. In: 2nd symposium on salt, Cleveland, Northern Ohio Geol Soc vol 1, pp 302–326

  • Klein C, Hurlbut CS Jr (1985) Manual of mineralogy after Dana JD (ed) 21st edn (revised) Wiley, New York

  • Lu FH, Meyers WJ, Schoonen MA (2001) S and O (SO4) isotopes, simultaneous modeling, and environmental significance of the Nijar Messinian gypsum, Spain. Geochim Cosmochim Acta 65:3081–3092

    Article  Google Scholar 

  • Machel HG (1993) Anhydrite nodules formed during deep burial. J Sed Petrol 63:659–662

    Google Scholar 

  • Machel HG, Burton EA (1991) Burial diagenetic sabkha-like gypsum and anhydrite nodules. J Sed Petrol 61:394–405

    Google Scholar 

  • Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10:373–389

    Article  Google Scholar 

  • Macleod JH, Akbari Y (1970) Behbahan quadrangle map 1:100000. Iranian Oil Operation Companies

  • MacMillan JP, Park JW, Gerstenberg R, Wagner H, Kohler K, Wallbrecht P (1994) Strontium compounds and chemicals, 5th edn. Ullmańs encyclopedia of industrial chemistry, vol A25, pp 321–327. VCH Verlagsgesellschaft m.b.H., Weinheim, Germany

  • Moore F, Jami M (1997) Syngenetic strontium ore deposition at the base of Asmari Formation, Bangestsn anticline, Behbahan, Iran. J Sci I R Iran 8:178–188

    Google Scholar 

  • Motiei H (1993) Stratigraphy of Zagros. Geological Survey of Iran Publications, Farsi

    Google Scholar 

  • Müller G (1962) Zur Geochemie des Strontiums in Ozeanen Evaporiten unter besonderer Berücksichtigung der sedimentären Coelestin-Lagerstätte von Hemmelte-Westerfeld (Südoldenburg). Beiheft des geologischen Jahrbuchs 35:1–90

    Google Scholar 

  • Müller G, Puchelt H (1961) Die Bildung von Cölestin (SrSO4) aus Meerwasser. Naturwissenschaften 48:301–302

    Article  Google Scholar 

  • Nabian A, Sadeddin N, Mehmannavazan K, Salehinia N (1986) Geological investigation and semi-detailed exploration of Kuh Talhe celestite deposit. Geological Survey of Iran, Farsi

  • Parsa HR (2000) Celestite prospecting project in Ilam, Dehloran, Eavan and Mehran cities. Ministry of Industry and Mines. Internal Report, Farsi

    Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–1462

    Article  Google Scholar 

  • Pierre C (1985) Isotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans. Chem Geol 53:191–196

    Article  Google Scholar 

  • Sabzehei M (1990) Celestite prospecting in Bangestan anticline. Ministry of mines and metals. Internal Report, Farsi

    Google Scholar 

  • Scholle PA, Stemmerik L, Harpoth O (1990) Origin of major karst-associated celestite mineralization in Karstrygen, central East Greenland. J Sed Petrol 60:397–410

    Google Scholar 

  • Seal RR, Alpers CN, Rye RO (2000) Stable isotope systematic of sulfate minerals. Rev Mineral 40:541–602

    Article  Google Scholar 

  • Setudehnia A (1977) The Mesozoic-Tertiary sequence in Southwest Iran and adjacent areas. National Iranian Oil Company, Tehran Report no. 1248

    Google Scholar 

  • Shearman DJ (1966) Origin of marine evaporites by diagenesis. Trans Inst Min Metal 77:208–215

    Google Scholar 

  • Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Mar Petrol Geol 21:535–554

    Article  Google Scholar 

  • Sherkati S, Molinaro M, de Lamotte DF, Letouzey J (2005) Detachment folding in the Central and Eastern Zagros fold-belt (Iran): salt mobility, multiple detachments and late basement control. J Struct Geol 27:1680–1696

    Article  Google Scholar 

  • Stöcklin J (1968) Structural history and tectonics of Iran: a review. Am Assoc Pet Geol Bull 52:1229–1258

    Google Scholar 

  • Taberner C, Marshall JD, Hendry JP, Pierre C, Thirlwal MF (2002) Celestite formation, bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada, NE Spain). Sedimentol 49:171–190

    Article  Google Scholar 

  • Tekin E (2001) Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulas-Sivas Basin, eastcentral Anatolia (Turkey). Turkish J Earth Sci 10:35–49

    Google Scholar 

  • Tucker ME (1991) Sedimentary petrology: an introduction to the origin of sedimentary rocks, 2nd edn. Blackwell Scientific Publications, Oxford, p 260

  • Warren JK, Kendall GCStC (1985) Composition of sequences formed in Marine sabkha (subaerial) and salina (subaqueous) settings- modern and ancient. Am Assoc Pet Geol Bull 69:1013–1023

    Google Scholar 

  • West IM, Brandon A, Smith A (1968) A tidal flat evaporitic facies in the Visean of Ireland. J Sed Petrol 38:1079–1093

    Google Scholar 

  • Whitford DJ, Kursch MJ, Solomon M (1992) Strontium isotope studies of barites, implications for the origin of base metal mineralization in Tasmania. Econ Geol 87:953–959

    Article  Google Scholar 

  • Yan J, Carlson EH (2003) Nodular celestite in the Chihsia formation (Middle Permian) of south China. Sedimentology 50:265–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ehya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehya, F., Shakouri, B. & Rafi, M. Geology, mineralogy, and isotope (Sr, S) geochemistry of the Likak celestite deposit, SW Iran. Carbonates Evaporites 28, 419–431 (2013). https://doi.org/10.1007/s13146-013-0137-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-013-0137-6

Keywords

Navigation