Skip to main content

Advertisement

Log in

Carbon and oxygen isotopic characteristics of the Ediacaran Doushantuo Formation in Fanjingshan area, northeastern Guizhou Province, China

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

New data of carbon and oxygen isotopes of the Ediacaran Doushantuo Formation from two measured sections in Fanjingshan area, northeastern Guizhou Province are presented in this paper. Carbon isotopes from Tongluo section and Nongjing section intervene between −3.2 and −5.4 ‰, an average value −4.3 ‰ and between −3.6 and +0.5 ‰, an average value −1.5 ‰, respectively; oxygen isotopes range from −7.0 to −11.0 ‰, an average value −9.3 ‰; and from −10.2 to −2.9 ‰, an average value −7.6 ‰, individually. Carbon and oxygen isotopes both display a negative-excursion trend. Carbon isotopes reduce dramatically in the middle of these sections. Average carbon isotope is the most negative from Yongyi section, moderate negative from Tongluo section and less negative from Nongjing section, which is characteristic of a large surface-to-deep ocean δ13C gradient/carbon isotopic stratification during Doushantuo period. The spatio-temporal variations of carbon isotope perhaps should be related to sedimentary facies and the relief of palaeo-ocean floor. Moreover, carbon isotope profiles from three sections in Fanjingshan area, northeastern Guizhou Province could compare to South China elsewhere and make interbasin high-resolution chemostratigraphic correlation possible in South China. The such large-scale carbon negative excursion worldwide must be the interactional result of multi-factors such as overturn of a redox-stratified ocean, extreme chemical weathering, massive oxidation of destabilized methane hydrates, and sudden formation and gradual dissipation of a global meltwater plume caused by sea-level rise during deglaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ader M, Macouin M, Trindade RIF, Hadrien MH, Yang Z, Sun Z, Besse J (2009) A multilayered water column in the Ediacaran Yangtze platform? Insights from carbonate and organic matter paired δ13C. Earth Planet Sci Lett 288(1–2):213–227

    Google Scholar 

  • Álvaro JJ, Macouin M, Bauluz B, Clausen S, Ader M (2007) The Ediacaran sedimentary architecture and carbonate productivity in the Atar cliffs, Adrar, Mauritania: palaeoenvironments, chemostratigraphy and diagenesis. Precambrian Res 153(3–4):236–261

    Google Scholar 

  • Bergmann KD, Zentmyer RA, Fischer WW (2011) The stratigraphic expression of a large negative carbon isotope excursion from the Ediacaran Johnnie Formation, Death Valley. Precambrian Res 188(1–4):45–56

    Google Scholar 

  • Bristow TF, Bonifacie M, Derkowski A, Eiler JM, Grotzinger JP (2011) A hydrothermal origin for isotopically anomalous cap dolostone cements from South China. Nature 274(7349):68–71

    Google Scholar 

  • Caron V, Ekomane E, Mahieux G, Moussango P, Ndjeng E (2010) The Mintom Formation (new): sedimentology and geochemistry of a Neoproterozoic, Paralic succession in south-east Cameroon. J Afr Earth Sci 57(4):367–385

    Google Scholar 

  • Caron V, Mahieux G, Ekomane E, Moussango P, Babinski M (2011) One, two or no record of late neoproterozoic glaciation in South-East Cameroon? J Afr Earth Sci 59(1):111–124

    Google Scholar 

  • Chen Z, Sun W (2001) Late Sinian (tubular) metazoan fossil: Cloudina and Sinotubulites from southern Shaanxi. Acta Micropalaeontologica Sinica 18:180–202 (in Chinese with English abstract)

    Google Scholar 

  • Chen JY, Bottjer DJ, Davidson EH, Dornbos SQ, Gao X, Yang YH, Li CW, Li G, Wang XQ, Xian DC, Wu HJ, Hwu YK, Tafforeau P (2006) Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science 312(5780):1644–1646

    Google Scholar 

  • Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA 106(16):6519–6524

    Google Scholar 

  • Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y (2005) U-Pb ages from the neoproterozoic Doushantuo Formation, China. Science 308(5718):95–98

    Google Scholar 

  • Corsetti FA, Grotzinger JP (2005) Origin and significance of tube structures in Neoproterozoic post-glacial cap carbonates: example from Noonday Dolomite, Death Valley, United States. Palaios 20(4):348–362

    Google Scholar 

  • Corsetti FA, Kaufman AJ (2003) Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geol Soc Am Bull 115(8):916–932

    Google Scholar 

  • Corsetti FA, Kaufman AJ (2005) The relationship between the Neoproterozoic Noonday Dolomite and the Ibex Formation: new observations and their bearing on ‘snowball Earth’. Earth Sci Rev 73(1–4):63–78

    Google Scholar 

  • Fölling PG, Frimmel HE (2002) Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa. Basin Res 14(1):69–88

    Google Scholar 

  • Font E, Nédélec A, Trindade RIF, Macouin M, Charrière A (2006) Chemostratigraphy of the Neoproterozoic Mirassol d’Oeste cap dolostones (Mato Grosso, Brazil): an alternative model for Marinoan cap dolostone formation. Earth Planet Sci Lett 250(1–2):89–103

    Google Scholar 

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10(6):578–596

    Google Scholar 

  • Halverson GP, Maloof AC, Hoffman PF (2004) The Marinoan glaciation (Neoproterozoic) in northeast Svalbard. Basin Res 16(3):297–324

    Google Scholar 

  • Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN (2005) Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull 117(9–10):1181–1207

    Google Scholar 

  • He XB, Xu B, Yuan ZY (2007) C-isotope composition and correlation of the upper Neoproterozoic in Keping area, Xinjiang. Chin Sci Bull 52(4):504–511

    Google Scholar 

  • Higgins JA, Schrag DP (2003) Aftermath of a snowball Earth. Geophys Geochem Geosyst 4(3):1–20

    Google Scholar 

  • Hoffman PF, Macdonald FA (2010) Sheet-crack cements and early regression in Marinoan (635 Ma) cap dolostones: regional benchmarks of vanishing ice-sheets? Earth Planet Sci Lett 300(3–4):374–384

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14(3):129–155

    Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281(5381):1342–1346

    Google Scholar 

  • Hoffman PF, Halverson GP, Domack EW, Husson JM, Higgins JA, Schrag DP (2007) Are basal Ediacaran (635 Ma) post-glacial “cap dolostones” diachronous? Earth Planet Sci Lett 258(1–2):114–131

    Google Scholar 

  • Hoffman PF, Calver CR, Halverson GP (2009) Cottons Breccia of King Island, Tasmania: glacial or non-glacial, Cryogenian or Ediacaran? Precambrain Res 172(3–4):311–322

    Google Scholar 

  • Hua H, Chen Z, Yuan X, Zhang L, Xiao S (2005) Skeletogenesis and asexual reproduction in the earliest biomineralizing animal, Cloudina. Geology 33(4):277–280

    Google Scholar 

  • Huang J, Chu XL, Jiang GQ, Feng LJ, Chang HJ (2011) Hydrothermal origin of elevated iron, manganese and redox-sensitive trace elements in the c. 635 Ma Doushantuo cap carbonate. J Geol Soc Lond 168(3):805–815

    Google Scholar 

  • Hurtgen MT, Halverson GP, Arthur MA, Hoffman PF (2006) Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: evidence for a synglacial sulfidic deep ocean. Earth Planet Sci Lett 245(3–4):551–570

    Google Scholar 

  • Jacobsen SB, Kaufman AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161(1–3):37–57

    Google Scholar 

  • James NP, Narbonne GM, Kyser TK (2001) Late Neoproterozoic cap carbonates: Mackenzie Mountains, northwestern Canada: precipitation and global meltdown. Can J Earth Sci 38(8):1229–1262

    Google Scholar 

  • Jenkins RJF (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrain Res 73(1–4):51–69

    Google Scholar 

  • Jensen S (2003) The Proterozoic and earliest Cambrian trace fossil record: patterns, problems, and perspectives. Integr Comp Biol 43:219–228

    Google Scholar 

  • Jiang GQ, Sohl LE, Christie-Blick N (2003a) Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China): paleogeographic implications. Geology 31(10):917–920

    Google Scholar 

  • Jiang GQ, Kennedy MJ, Christie-Blick N (2003b) Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426(6968):822–826

    Google Scholar 

  • Jiang GQ, Shi XY, Zhang SH (2006) Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chin Sci Bull 51(10):1152–1173

    Google Scholar 

  • Jiang GQ, Kaufman AJ, Christie-Blick N, Zhang SH, Wu HC (2007) Carbon isotope variability across the Ediacaran Yangtze platformin South China: implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett 261(1–2):303–320

    Google Scholar 

  • Jiang GQ, Zhang SH, Shi XY, Wang XQ (2008) Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Science in China. Sci China Ser D Earth Sci 51(11):1560–1569

    Google Scholar 

  • Jiang GQ, Wang XQ, Shi XY, Zhang SH, Xiao SH, Dong J (2010) Organic carbon isotope constraints on the dissolved organic carbon (DOC) reservoir at the Cryogenian–Ediacaran transition. Earth Planet Sci Lett 299(1–2):159–168

    Google Scholar 

  • Jiang GQ, Shi XY, Zhang SH, Wang Y, Xiao SH (2011) Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Res 19(4):831–849

    Google Scholar 

  • Kaufman AL, Knoll AH (1995) Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrain Res 73(1–4):27–94

    Google Scholar 

  • Kaufman AJ, Hayes JM, Knoll AH, Germs GJB (1991) Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrain Res 49(3–4):301–327

    Google Scholar 

  • Kaufman AJ, Jacobsen SB, Knoll AH (1993) The Vendian record of Sr- and C-isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet Sci Lett 120(3–4):409–430

    Google Scholar 

  • Kaufman AJ, Jiang GQ, Christic-Blick N, Banerjee DM, Rai V (2006) Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrain Res 147(1–2):156–185

    Google Scholar 

  • Kennedy MJ (1996) Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic cap dolostones: deglaciation, δ13C excursions, and carbonate precipitation. J Sediment Res 66(6):1050–1064

    Google Scholar 

  • Kennedy MJ, Runnegar B, Prave AR, Hoffmann KH, Arthur MA (1998) Two or four Neoproterozoic glaciations? Geology 26(12):1059–1063

    Google Scholar 

  • Kennedy MJ, Christie-Blick N, Sohl LE (2001) Are Proterozoic cap carbonate and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology 29(5):443–446

    Google Scholar 

  • Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 51–52

    Google Scholar 

  • Knoll AH, Hayes JM, Kaufman AJ, Swett K, Lambert IB (1986) Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 32(6073):832–838

    Google Scholar 

  • Lambert IB, Walter MR, Zhang WL, Lu SN, Ma GG (1987) Palaeoenvironment and carbon isotope study of the Yangtze Platform. Nature 325(6100):140–142

    Google Scholar 

  • Le Guerroué E, Cozzi A (2010) Veracity of Neoproterozoic negative C-isotope values: the termination of the Shuram negative excursion. Gondwana Res 17(4):653–661

    Google Scholar 

  • Le Guerroué E, Allen PA, Cozzi A (2006) Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambrain Res 146(1–2):68–92

    Google Scholar 

  • Ling HF, Feng HZ, Pan JY, Jiang SY, Chen YQ, Chen X (2007) Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: implications for chemostratigraphy and paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 254(1–2):158–174

    Google Scholar 

  • Macdonald FA, Jones DS, Schrag DP (2009) Stratigraphic and tectonic implications of a newly discovered glacial diamictite–cap carbonate couplet in southwestern Mongolia. Geology 37(2):123–126

    Google Scholar 

  • McCall GJH (2006) The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion. Earth Sci Rev 77(1–3):1–229

    Google Scholar 

  • McFadden KA, Huang J, Chu X, Jiang GQ, Kaufman AJ, Zhou C, Yuan X, Xiao S (2008) Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA 105(9):3197–3202

    Google Scholar 

  • Melezhik VA, Gorokhov IM, Fallick AE, Gjelle S (2001) Strontium and carbon isotope geochemistry applied to dating of carbonate sedimentation: an example from high-grade rocks of the Norwegian Caledonides. Precambrain Res 108(3–4):267–292

    Google Scholar 

  • Misi A, Kaufman AJ, Veizer J, Powis K, Azmy K, Boggiani PC, Gaucher C, Teixeira JB, Sanches AL, Iyer SS (2007) Chemostratigraphic correlation of Neoproterozoic successions in South America. Chem Geol 237(1–2):143–167

    Google Scholar 

  • Myrow PM, Kaufman AJ (1999) A newly discovered cap carbonate above Varanger-age glacial deposits in Newfoundland, Canada. J Sediment Res 69(3):784–793

    Google Scholar 

  • Narbonne GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33(1):421–442

    Google Scholar 

  • Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31(1):27–30

    Google Scholar 

  • Nédélec A, Affaton P, France-Lanord C, Charrière A, Alvaro J (2005) Sedimentology and chemostratigraphy of the Bwipe Neoproterozoic cap dolostones (Ghana, Volta Basin): a record of microbial activity in a peritidal environment. Comptes Rendus Geosci 339(3):223–239

    Google Scholar 

  • Nogueira ACR, Riccomini C, Sial AN, Moura CAV, Fairchild TR (2003) Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geology 31(7):613–616

    Google Scholar 

  • Nogueira ACR, Riccomini C, Sial AN, Moura CAV, Trindade RIF, Fairchild TR (2007) Carbon and Strontium isotope fluctuations and paleoceanographic changes in the late Neoproterozoic Araras carbonate platform, southern Amazon craton, Brazil. Chem Geol 237(1–2):168–190

    Google Scholar 

  • Pokrovsky BG, Melezhik VA, Bujakaite MI (2006) Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: communication 1. Results, isotope stratigraphy, and dating problems. Lithol Min Resour 41:450–474

    Google Scholar 

  • Porter SM, Knoll AH, Affaton P (2004) Chemostratigraphy of Neoproterozoic cap carbonates from the Volta Basin, West Africa. Precambrian Res 130(1–4):99–112

    Google Scholar 

  • Prave AR, Fallick AE, Thomas CW (2009) A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. J Geol Soc 166(5):845–857

    Google Scholar 

  • Préat A, Prian JP, Thiéblemont D, Obame RM, Delpomdor F (2011) Stable isotopes of oxygen and carbon compositions in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin): are cap carbonates and lithoherms recording a particular destabilization event after the Marinoan glaciation? J Afr Earth Sci 60(4):273–287

    Google Scholar 

  • Ridgwell AJ, Kennedy MJ, Caldeira K (2003) Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302(5646):859–862

    Google Scholar 

  • Rose CV, Maloof AC (2010) Testing models for post-glacial ‘cap dolostone’ deposition: Nuccaleena Formation, South Australia. Earth Planet Sci Lett 296(3–4):165–180

    Google Scholar 

  • Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley BF, Han J, Shu DG, Li Y (2010) The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the three Gorges area, South China. Precambrian Res 176(1–4):46–64

    Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries. Carbon, sulfur, hydrogen and nitrogen. In: Schopf JW (ed) Earth’s earliest biosphere—its origin and evolution. Princeton University Press, Princeton, pp 149–186

    Google Scholar 

  • Shen YN (2002) C-isotope variations and paleoceanographic changes during the late Neoproterozoic on the Yangtze Platform, China. Precambrian Res 113(1–2):121–133

    Google Scholar 

  • Shen YN, Schidlowski M (2000) New C isotope stratigraphy from southwest China: implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology 28(7):623–626

    Google Scholar 

  • Shen B, Xiao SH, Kaufman AJ, Bao HM, Zhou CM, Wang HF (2008) Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth Planet Sci Lett 265(1–2):209–228

    Google Scholar 

  • Shen B, Xiao SH, Bao HM, Kaufman AJ, Zhou CM, Yuan XL (2010) Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciations. Geochim Cosmochim Acta. doi:10.1016/j.gca.2010.12.015

    Google Scholar 

  • Shen YN, Zhang TG, Chu XL (2005) C-isotopic stratification in a Neoproterozoic postglacial ocean. Precambrain Res 137(3–4):243–251

    Google Scholar 

  • Shields GA (2005) Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis. Terra Nova 17(4):299–310

    Google Scholar 

  • Shields GA, Brasier MD, Stille P, Dorjnamja D (2002) Factors contributing to high δ13C values in Cryogenian limestones of western Mongolia. Earth Planet Sci Lett 196(3–4):99–111

    Google Scholar 

  • Shields GA, Deynoux M, Strauss H, Paquet H, Nahon D (2007) Barite-bearing cap dolostones of the Taoudéni Basin, northwest Africa: sedimentary and isotopic evidence for methane seepage after a Neoproterozoic glaciations. Precambrain Res 153(3–4):209–235

    Google Scholar 

  • Sial AN, Gaucher C, da Silva Filho MA, Ferreira VP, Pimentel MM, Lacerda LD, Filho EVS, Cezario W (2010) C-, Sr-isotope and Hg chemostratigraphy of Neoproterozoic cap carbonates of the Sergipano Belt, Northeastern Brazil. Precambrian Res 182(4):351–372

    Google Scholar 

  • Skotnicki SJ, Hill AC, Walter M, Jenkins R (2008) Stratigraphic relationships of Cryogenian strata disconformably overlying the Bitter Springs Formation, northeastern Amadeus Basin, Central Australia. Precambrian Res 165(3–4):243–259

    Google Scholar 

  • Vernhet E, Reijmer JJG (2010) Sedimentary evolution of the Ediacaran Yangtze platform shelf (Hubei and Hunan provinces, Central China). Sed Geol 225(3–4):99–115

    Google Scholar 

  • Vernhet E, Heubeck C, Zhu MY, Zhang JM (2007) Stratigraphic reconstruction of the Ediacaran Yangtze platform margin (Hunan Province, China) using a large olistolith. Palaeogeogr Palaeoclimatol Palaeoecol 254(1–2):123–139

    Google Scholar 

  • Walter MR, Veevers JJ, Calver CR, Gorjan P, Hill AC (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models. Precambrain Res 100(1–3):371–433

    Google Scholar 

  • Wang J, Li ZX (2003) History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrain Res 122(1–4):141–158

    Google Scholar 

  • Wang XQ, Shi XY (2009) Spatio-temporal carbon isotope variation during the Ediacaran period in South China and its impact on bio-evolution. Sci China Ser D Earth Sci 52(10):1520–1528

    Google Scholar 

  • Wang JS, Jiang GQ, Xiao SH, Li Q, Wei Q (2008) Carbon isotope evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in South China. Geology 36(5):347–350

    Google Scholar 

  • Xiao S (2004) New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic, Yangtze Gorges, South China). J Paleontol 78(2):393–401

    Google Scholar 

  • Xiao S, Yuan X, Steiner M, Knoll AH (2002) Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. J Paleontol 76(2):345–374

    Google Scholar 

  • Xiao SH, Bao HM, Wang HF, Kaufman AJ, Zhou CM, Li GX, Yuan XL, Ling HF (2004) The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan: evidence for a post-Marinoan glaciation. Precambrain Res 130(1–4):1–26

    Google Scholar 

  • Xiong GQ (2006) Geochemical characteristics and its mechanism of Cap Dolostone at the bottom of the Doushantuo Formation in Northwestern Fanjingshan Mountain in GuiZhou Province. Sediment Geol Tethyan Geol 2(26):7–11 (in Chinese with English abstract)

    Google Scholar 

  • Yang JD, Sun WG, Wang ZZ, Xue YS, Tao XC (1999) Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrain Res 93(2–3):215–233

    Google Scholar 

  • Yin CY, Liu PJ, Chen SM, Tang F, Gao LZ (2009) Acritarch biostratigraphic succession of the Ediacaran Doushantuo Formation in the Yangtze Gorges. Acta Palaeontologica Sinica 48(2):146–154 (in Chinese with English abstract)

    Google Scholar 

  • Yoshioka H, Asahara Y, Tojo B, Kawakami S (2003) Systematic variations in C, O and Sr isotopes and elemental concentrations in Neoproterozoic carbonates in Namibia: implications for a glacial to interglacial transition. Precambrian Res 124:69–85

    Google Scholar 

  • Zhang SH, Jiang GQ, Zhang JM, Song B, Kennedy MJ, Christie-Blick N, Dyson IA, von der Borch CC (2005) U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in South China: constraints on late Neoproterozoic glaciations. Geology 33(6):473–476

    Google Scholar 

  • Zhang SH, Jiang GQ, Han YG (2008) The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova 20(4):289–294

    Google Scholar 

  • Zhao YY, Zheng YF (2010) Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China. Chem Geol 271(1–2):86–100

    Google Scholar 

  • Zhao YL, He MH, Chen ME, Peng J, Yu MY, Wang Y, Yang RJ, Wang PL, Zhang ZH (2005) The discovery of a Miaohe-type biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China. Chin Sci Bull 49(20):1916–1918

    Google Scholar 

  • Zhou CM, Xiao SH (2007) Ediacaran δ13C chemostratigraphy of South China. Chem Geol 237(1–2):89–108

    Google Scholar 

  • Zhou CM, Tucker R, Xiao SH, Peng ZX, Yuan XL, Chen Z (2004) New constraints on the ages of Neoproterozoic glaciations in South China. Geology 32(5):437–440

    Google Scholar 

  • Zhou Q, Du YS, Wang JS, Peng JQ (2007) Characteristics and Significance of the Cold Seep Carbonates from the Datangpo Formation of the Nanhua Series in the Northeast Guizhou. Earth Sci J China Univ Geosci 32(3):53–60 (in Chinese with English abstract)

    Google Scholar 

  • Zhou JC, Wang XL, Qiu JS (2009) Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: coeval arc magmatism and sedimentation. Precambrain Res 170(1–2):27–42

    Google Scholar 

  • Zhu MY, Zhang JM, Yang AH (2007) Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclimatol Palaeoecol 254(1–2):7–61

    Google Scholar 

  • Zhu MY, Lu M, Zhang JM, Zhao FC, Li GX, Yang AH, Zhao X, Zhao MJ (2011) Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res. doi:10.1016/j.precamres.2011.07.019

    Google Scholar 

Download references

Acknowledgments

The authors thank Jin Guishan for analyzing carbon and oxygen isotopes of the carbonate samples. They are particularly grateful to reviewers for offering their revised suggestions about this manuscript. The work was financially co-supported by the National Natural Science Foundation of China (Grant Nos. 41030315, 41072088), Strategic Research Center of Oil and Gas Resource (Grant No. 2009GYXQ15-08) and China geological survey (Grant No. 1212011121105) of Ministry of Land and Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, G., Duan, T., Wu, H. et al. Carbon and oxygen isotopic characteristics of the Ediacaran Doushantuo Formation in Fanjingshan area, northeastern Guizhou Province, China. Carbonates Evaporites 28, 399–412 (2013). https://doi.org/10.1007/s13146-013-0135-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-013-0135-8

Keywords

Navigation